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eMethods 1. Additional Information Regarding the Digital Scanner, Eligible Patients, and the Database Source 

 

  

The patients in Cohort 1 were obtained from archival cases at Vancouver General Hospital between 1974 and 1995. 

The tumor specimens of the patients in Cohort 2 were processed by a central laboratory at Vancouver General 

Hospital between 1986 and 1992. In Cohort 1, any patient that was annotated for ER status was eligible for the study 

and analysis. In Cohort 2, any patient that had unequivocal annotation of a certain biomarker was eligible for the 

study and analysis of this biomarker (4,745 of the 4,944 patients had annotation to at least one biomarker). The 

median age at diagnosis was 61 years for Cohort 1 (412 patients) and 62 years for Cohort 2 (4,944 patients), and the 

median follow-ups were 12.0 and 12.4 years, respectively. The number of eligible patients, the annotated 

biomarkers, and the binary cut-point used in this paper are summarized in eTable 1. The group of ER-/PR+ patients 

in Cohort 2 was analyzed independently when applying the system. The TMA slides contain 0.6-mm-diameter cores 

and were scanned using the Bacus Laboratories, Inc. Slide Scanner (Bliss) scanner at a resolution of 2256 × 1440 

pixels. In our data processing, a square section of 1440 ×1440 was cut from the middle of each images, and then all 

images were resized to a resolution of 512 ×512. No additional image processing was done prior to the CNN model 

and feature extraction pipeline. All data and annotations can be found on http://bliss.gpec.ubc.ca/ and 

http://www.gpecimage.ubc.ca/.  

 

eMethods 2. Practical Considerations for Combining Image Scores Into a Single Patient Score 

 

The logistic regression obtains a set of features encoding a single H&E image and outputs its r score. Given k 

images with output scores r1,r2,…,rk belonging to the same patient, we computed the combined patient’s r score 

similarly to [1]. Namely, we averaged the feature set across all images belonging to this patient and then applied the 

logistic regression. This could be interpreted as concatenating all TMA images of the patient and applying the 

pipeline on the concatenated image. In practice, this procedure is equivalent to averaging the prediction scores li 

before the sigmoid operation
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eMethods 3. Amount of Data vs the System’s Performance: Additional Details for Reproducibility 

 

To change the resolution according to the parameter R, all images were resized to R × R pixels using a standard 

bicubic interpolation. To change the cut size according to the parameter C, a square of size C × C pixels was cut out 

from the center of each image. To change the number of TMA images per patient according to the parameter S, for 

each patient, S of the images belonging to the patient were selected randomly. Then, only these images were taken 

into consideration in the prediction process. To change the number of patients according to the parameter P, P 

patients were selected randomly to form a new dataset. Each of the parameters P,R,C,S was changed at a time while 

the rest were kept fixed at their maximal values. Since for the parameters P and S a random selection was used in the 

process, we repeated the experiment N times and averaged the results. The number of repetitions N was set such that 

the 95% confidence interval of the resulting average was less than 1% around the average value. 

 

eMethods 4. A Full Description of the MBMP Process 

 

The MBMP process consists of four stages. The first three stages are aimed at constructing the model, and are done 

only once per cohort, per cancer type, and per marker. The fourth stage is a decision module that outputs the final 

prediction based on the patient’s H&E-stained images.  

 

1. Data collection 

In the first stage, digital H&E-stained images should be collected of a set of patients from the cohort. Our 

experiments show that with better resolution, larger cut-size, larger number of patients and especially larger number 

of TMA images per patient, the system’s performance is likely to improve. In our work we used TMA images with 

http://bliss.gpec.ubc.ca/
http://www.gpecimage.ubc.ca/
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size 512 × 512. If the work is done on whole slide images (WSI) and not on TMAs, we recommend extracting non-

overlapping patches from each WSI and treat them as multiple TMA images.  

The molecular expression of the molecule in question should be collected for each patient. In our work we focus on 

binary labels (positive/negative status). However, we showed that the actual percentage is expressed as well and not 

only the binary status, and thus could probably be predicted given enough data. The molecular expression labels of 

the patients are then assigned to their H&E images.  

The patients (and their images) in the collected dataset should be split to a training and validation set. For both 

cohorts in our work, we used 5/6 of the patients in the training set and the rest of the 1/6 patients for the validation 

set. A different setting may be more beneficial for different types datasets. 

 

2. Training or using an existing cohort-specific and a cross-cohort ResNets 

Once H&E images and their corresponding molecular expression labels are collected, the next step is to train the 

cohort-specific ResNet to predict the labels from the H&E images. The architecture of the ResNet we used is 

described in eFigure 3A. We used the common ResNet architecture [2] without any architectural changes. The 

ResNet should be trained using the training set. 

If a Cross-Cohort ResNet that was already trained on several other cohorts is available, it might be sufficient to use 

the existing one. Otherwise, to improve the performance, another Cross-Cohort ResNet should be trained to predict 

the label from H&E belonging to all available cohorts (including the current one). This ResNet should not be trained 

on the validation set of the current cohort. 

 

3. Training the logistic regression on a validation set 

In the next step, the two ResNets should be applied to the images belonging to the validation set of patients that 

were not seen so far. The 64 features of each ResNet should be concatenated into a vector of 128 features per image, 

according to the inference model in eFigure 3B. A logistic regression should then be trained on these features to 

extract the final label.  

 

4. Inference and decision 

The previous stages should be done only once per cohort, cancer type, and molecule in question. Given H&E images 

of a test patient that was never seen by the system, the two trained ResNets should be applied to all images to extract 

128 features from each. These features should be averaged to obtain one vector of 128 features. Then, the trained 

logistic regression should be applied to these features (eFigure 3B). The output of the logistic regression is a score r 

that denotes the probability of the molecule in question is expressed for this patient.  

The molecular expression should be predicted as negative for r < Tl, positive for Th < r, and inconclusive for 

Tl < r < Th. These thresholds should hold the condition 0 < Tl  ≤ Th < 1, and should be determined according to the 

desired accuracy and screening process (see Methods and Results in the main text).  

 

eMethods 5. Additional Details and Considerations Regarding the Train and Test Partitions 

 

For the logistic regression, the performance was assessed by 10-fold cross-validation model, where in each fold the 

system was trained on 9 subsets of the patients and tested on the held-out patients. This partition setting exploited 

9/10=90% of the data for training the model, while statistical outcomes were obtained and evaluated for all cases. 

The deep CNN was trained and asses by 6-fold cross validation, where in each fold, 5 groups were used to train the 

ResNet units. The trained ResNet units were applied to the remainder group to extract the features. Then, these 

features were used to train and test the logistic regression unit in an inner 10-fold cross-validation manner. This 

partition setting exploited 5/6=83.3% of the data for training the CNN model and 9/10*1/6 = 15% of the data for 

training the logistic regression on the CNN-based features. We randomly chose 3 out of the 6 folds and performed 

the training and inference process. Thus, statistical outcomes were obtained and evaluated for 3/6=50% of the cases. 

The performance of each of the presented systems was assessed on images of previously unseen patients. Extra care 

was taken to ensure that any data belonging to the test patients, including their H&E-stained TMA images, IHC-

stained TMA images, and biomarker annotations, were concealed from the systems during their training. 
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eFigure 1. Logistic Regression Training Model 

 
(A) The H&E image is segmented into non-overlapping superpixel patches, and (B) local features are extracted from each patch 
using different arithmetic operations (eFigure 2). (C) The features are averaged across all patches, as well as (D) across all other 
TMA images that belong to the same patient, to obtain a final patient feature vector. (E) An L1 regularized logistic regression is 
trained to predict biomarker expression from its feature vector.  
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eFigure 2. Feature Extraction Pipeline  
 

  
(A) The H&E image is segmented into non-overlapping small patches termed superpixels [3]. (B) The H&E image is decoupled into 
red, green, and blue (RGB) channels such that each channel was a two-dimensional array. In the same manner, it is decoupled into 
hue, saturation, and value channels. Lastly, it is decoupled into hematoxylin and eosin channels, according to the color unmixing 
model previously described [4]. Overall, the H&E image is transformed into 8 two-dimensional images. (C) Gradient (magnitude) 
and Laplacian of Gaussians (LoG) are widely used operators that involve convolving the image with appropriate filters to produce 
another image that typically can be used for finding edges and extracting interesting structures like blobs. Here, each one of these 
two operators are applied to each one of the 8 channels to obtain an overall of 8*3=24 two-dimensional channel images (including 
the original 8 channels). Note that these channels inherit the superpixel segmentation of stage (A). (D) Unlike operators which map 
an image to an image, the local operators in this stage map each superpixel patch into a scalar value. We used 9 such operators - 
min, max, mean, median, standard deviation (STD), the standard first order histogram features skewness, energy, and entropy, and 
distance to nearest patch neighbor (between centroids). In this manner, 24*9 = 216 scalar values are extracted from each patch. (E) 
The features of each patch are integrated with the features of its 8 nearest patch neighbors (measured via distance between their 
centroids), by applying 6 operators - min, max, mean, median, sum, and STD, overall obtaining 216*6=1,296 scalar values per 
patch. (F) Finally, each feature is averaged across all patches to obtain a final vector of 1,296 scalar values that encodes the entire 
image. 
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eFigure 3. Deep Convolutional Network Model for Training and Inference 
 
A. ResNet architecture 

 
 
B. Inference pipeline 

 
(A) Deep convolutional residual network (ResNet) architecture. The architecture of the residual layer is shown inside the dashed 
green frame. During inference, we use the common practice of omitting the final linear layer to obtain the 64-feature vector produced 
by the network. (B) The CNN inference model. To compensate for cohort diversity, the inference pipeline (blue frame) includes two 
ResNet units, termed as the cross-cohort ResNet and the cohort-specific ResNet, that were each trained to predict the molecular 
expression. The cross-cohort Resnet was trained on H&E images from both Cohort 1 and Cohort 2 and a specific-cohort ResNet 
was trained for each cohort independently, i.e., only on H&E images belonging to patients from this cohort. The features of both 
ResNets are aggregated and used as an input to an L1 regularized logistic. The final output score r, which is a derivative of the 
commonly used logistic regression model, indicates the predicted probability for positive molecular expression. 
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eFigure 4. Response Map Inference Pipeline  

 
 
A test H&E is passed through the first layers of the trained network to obtain 64 128 × 128 feature maps. Previously (eFigure 3), the 
feature maps were passed through an average pooling, linear layer and then softmax to obtain the final r score. Here, instead, these 
maps are weighted-averaged with the weights of the trained logistic regression to obtain a single map, termed as the response map. 
Since weighted average and average pooling are linear operations, changing their order should not influence the final r score. i.e, 
performing average pooling and softmax on the response map results in the same r score obtained in the previous pipeline. In the 
resulting response map, areas with positive values in the correspond to morphology patterns that contribute to positive prediction, 
and vice versa. Since this pipeline is fully based on spatial-invariant operations such as convolutions, the output response map 
locally matched the H&E image. 
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eTable 1. Cut Points, Number of Patients, and Number of H&E Images  
 
 
  
 
 

The molecular biomarkers in Cohort 2 (A) and Cohort 1 (B) are shown with their corresponding cut-off points. The 

number of patients participating in the experiment varies for different biomarkers and, together with the total 

number of H&E images, is indicated for each biomarker.The cut-off points were obtained from the papers 

describing expression of these biomarkers for Cohort 1 and Cohort 2 http://www.gpecimage.ubc.ca/. (ITILs - 

intratumoral tumor-infiltrating lymphocytes. STILs - stromal tumor-infiltrating lymphocytes). 

  

Biomarker Negative Positive #Patients #H&E images 

A. Cohort 2     

  Ki-67 Score < 10% Score >= 14% 3,292 9,876 

  EGFR Score = 0% Score >= 1% 3,905 11,715 

  ER Score = 0% Score >= 1% 4,521 13,563 

  FOXP3-STIL STIL < 3 STIL >= 3 3,277 9,831 

  CD8-STIL STIL < 3 STIL >= 3 3,905 11,715 

  CA9 Score = 0% Score >= 1% 4,150 12,450 

  IGF-1R Score < 67% Score >= 67% 1,948 5,844 

  FOXP3-ITIL ITIL < 2 ITIL >= 2 3,277 9,831 

  PR Score = 0% Score >= 1% 3,691 11,073 

  HER2 Score < 10%, OR  
10% <= Score < 30% 
and  
fish amplification < 1.8 

Score >= 30%, OR  
10% <= Score < 30% 
and  
fish amplification > 2.2 

4,264 12,789 

  P53 Score < 10% Score >= 10% 4,462 13,386 

  CD8-ITIL STIL < 1 ITIL >= 1 3,905 11,715 

  CK56 Score < 20% Score >= 20% and 
strong staining 

3,828 11,484 

  RET Score = 0% Score >= 1% 3,634 10.902 

  HER3 Score < 20% Score >= 20% 3,516 10,584 

  P-CAHEDRIN Score < 30% Score >= 70% 4,273 12,819 

  MDM2 Score = 0% Score >= 1% 1,979 5,937 

  CRYAB4000 Score < 30% Score >= 30% 3,704 11,112 

  GATA3 Score < 5% Score >= 5% 3,539 10,617 

  HER4 Score = 0% Score >= 1% 3,824 11,472 

  C-KIT Score = 0% Score >= 3% 4,035 12,105 

B. Cohort 1     

  ER Score < 10% Score >= 10% 412 5,768 

http://www.gpecimage.ubc.ca/
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eTable 2. Association of Biomarker Expression and Tumor Morphology 
  
 

 

 

 
 

The resulting AUC, BACC and P values of the L1 regularized regression classification are shown for each one of the 

19 tested molecular biomarkers. The lymphocyte markers CD8 and FOXP3 were further stratified to intratumoral 

tumor-infiltrating lymphocytes (ITILs) and stromal tumor-infiltrating lymphocytes (STILs).  

Number Biomarker AUC BACC P value 

1 Ki-67 0.82 0.74 <0.001 

2 EGFR 0.82 0.74 <0.001 

3 ER 0.8 0.73 <0.001 

4 FOXP3-STIL 0.78 0.7 <0.001 

5 CD8-STIL 0.77 0.69 <0.001 

6 CA9 0.76 0.7 <0.001 

7 IGF-1R 0.76 0.69 <0.001 

8 FOXP3-ITIL 0.76 0.7 <0.001 

9 PR 0.75 0.69 <0.001 

10 HER2 0.74 0.68 <0.001 

11 P53 0.73 0.68 <0.001 

12 CD8-ITIL 0.72 0.66 <0.001 

13 CK56 0.71 0.67 <0.001 

14 RET 0.7 0.65 <0.001 

15 HER3 0.7 0.65 <0.001 

16 P-CAHEDRIN 0.69 0.64 <0.001 

17 MDM2 0.68 0.64 <0.001 

18 CRYAB4000 0.68 0.62 <0.001 

19 GATA3 0.68 0.62 <0.001 

20 HER4 0.67 0.63 <0.001 

21 C-KIT 0.66 0.61 <0.001 
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eTable 3. Performance of Morphological-Based Molecular Profiling  

Statistical summary of the prediction performance of CNN based MBMP with different 
thresholds for both cohorts, compared to IHC done with SP1 antibody. 

  IHC (SP1)    

Method and cohort Measure Negative Positive Total Predictive 
Value 

Performance 

MBMP (Tl = 0.5, Th = 0.5)       

  Cohort 2       

 Negative 394 274 668 59%  

 Positive 94 1284 1378 93%  

 Total classified 488 1558 2046 (100%)   

 BACC     82% 

 ACC     82% 

  Cohort 1       

 Negative 25 35 60 42%  

 Positive 13 134 147 91%  

 Total classified 38 169 207 (100%)   

 BACC     73% 

 ACC     77% 

MBMP (Tl = 0.25, Th = 0.75)       

  Cohort 2       

 Negative 217 69 286 76%  

 Positive 24 749 773 97%  

 Total classified 241 818 1059 (52%)   

 BACC     91% 

 ACC     91% 

  Cohort 1       

 Negative 13 6 19 68%  

 Positive 2 84 86 98%  

 Total classified 15 90 105 (51%)   

 BACC     90% 

 ACC     92% 
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eTable 4. Multiple Logistic Regression 
A multiple logistic regression model was fitted with the likelihood-ratio test to the ER 
status, using all other clinical and molecular measurements of Cohort 2 (A) and Cohort 
1 (B) as independent variables. (ITILs - intratumoral tumor-infiltrating lymphocytes; 
STILs - stromal tumor-infiltrating lymphocytes).  

  Variable L-R Chi-square P value 

A. Cohort 2   

  PR 251.03 <0.001 

  MBMP 86.12 <0.001 

  EGFR 33.48 <0.001 

  IGF-1R 31.13 <0.001 

  GATA3 27.09 <0.001 

  CRYAB4000 26.43 <0.001 

  P-CAHEDRIN 13.46 0.001 

  P53 11.07 0.003 

  HER4 10.51 0.005 

  RET 8.21 0.02 

  HER2 8.08 0.02 

  CK56 6.42 0.04 

  Ki-67 5.21 0.07 

  CD8-ITIL 4.18 0.12 

  CA9 3.61 0.16 

  FOXP3-ITIL 1.56 0.45 

  HER3 1.44 0.48 

  FOXP3-STIL 0.33 0.56 

  C-KIT 1.01 0.60 

  CD8-STIL 0.13 0.70 

  MDM2 0.36 0.83 

B. Cohort 1   

  MBMP 26.81 <0.001 

  Time to death 3.57 0.05 

  Grade 5.48 0.06 

  Age 1.61 0.20 

  Tumor Size 0.90 0.34 

  Lymph Node Status 0.85 0.35 

  Mastectomy 0.16 0.68 



© 2019 Shamai G et al. JAMA Network Open. 

 

 

References 
 

[1]  A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen, M. J. Van De Vijver, R. B. West, M. Van 

De Rijn and D. Koller, "Systematic analysis of breast cancer morphology uncovers stromal features associated 

with survival," Science translational medicine, vol. 3, pp. 108ra113--108ra113, 2011.  

[2]  K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," in Proceedings of the 

IEEE conference on computer vision and pattern recognition, 2016.  

[3]  R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk and others, "SLIC superpixels compared to 

state-of-the-art superpixel methods," IEEE transactions on pattern analysis and machine intelligence, vol. 34, 

pp. 2274-2282, 2012.  

[4]  A. C. Ruifrok, D. A. Johnston and others, "Quantification of histochemical staining by color deconvolution," 

Analytical and quantitative cytology and histology, vol. 23, pp. 291-299, 2001.  

 

 

 


