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Abstract

IMPORTANCE Immunohistochemistry (IHC) is the most widely used assay for identification of
molecular biomarkers. However, IHC is time consuming and costly, depends on tissue-handling
protocols, and relies on pathologists’ subjective interpretation. Image analysis by machine learning is
gaining ground for various applications in pathology but has not been proposed to replace
chemical-based assays for molecular detection.

OBJECTIVE To assess the prediction feasibility of molecular expression of biomarkers in cancer
tissues, relying only on tissue architecture as seen in digitized hematoxylin-eosin (H&E)–stained
specimens.

DESIGN, SETTING, AND PARTICIPANTS This single-institution retrospective diagnostic study
assessed the breast cancer tissue microarrays library of patients from Vancouver General Hospital,
British Columbia, Canada. The study and analysis were conducted from July 1, 2015, through July 1,
2018. A machine learning method, termed morphological-based molecular profiling (MBMP), was
developed. Logistic regression was used to explore correlations between histomorphology and
biomarker expression, and a deep convolutional neural network was used to predict the biomarker
expression in examined tissues.

MAIN OUTCOMES AND MEASURES Positive predictive value (PPV), negative predictive value
(NPV), and area under the receiver operating characteristics curve measures of MBMP for
assessment of molecular biomarkers.

RESULTS The database consisted of 20 600 digitized, publicly available H&E-stained sections of
5356 patients with breast cancer from 2 cohorts. The median age at diagnosis was 61 years for cohort
1 (412 patients) and 62 years for cohort 2 (4944 patients), and the median follow-up was 12.0 years
and 12.4 years, respectively. Tissue histomorphology was significantly correlated with the molecular
expression of all 19 biomarkers assayed, including estrogen receptor (ER), progesterone receptor
(PR), and ERBB2 (formerly HER2). Expression of ER was predicted for 105 of 207 validation patients
in cohort 1 (50.7%) and 1059 of 2046 validation patients in cohort 2 (51.8%), with PPVs of 97% and
98%, respectively, NPVs of 68% and 76%, respectively, and accuracy of 91% and 92%, respectively,
which were noninferior to traditional IHC (PPV, 91%-98%; NPV, 51%-78%; and accuracy, 81%-90%).
Diagnostic accuracy improved given more data. Morphological analysis of patients with
ER-negative/PR-positive status by IHC revealed resemblance to patients with ER-positive status
(Bhattacharyya distance, 0.03) and not those with ER-negative/PR-negative status (Bhattacharyya
distance, 0.25). This suggests a false-negative IHC finding and warrants antihormonal therapy for
these patients.

(continued)

Key Points
Question Can molecular markers of

cancer be extracted from tissue

morphology as seen in hematoxylin-

eosin–stained images?

Findings In this diagnostic study of

tissue microarray hematoxylin-eosin–

stained images from 5356 patients with

breast cancer, molecular biomarker

expression was found to be significantly

associated with tissue histomorphology.

A deep learning model was able to

predict estrogen receptor expression

solely from hematoxylin-eosin–stained

images with noninferior accuracy to

standard immunohistochemistry.

Meaning These results suggest that

deep learning models may assist

pathologists in molecular profiling of

cancer with practically no added cost

and time.

+ Supplemental content

Author affiliations and article information are
listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2019;2(7):e197700. doi:10.1001/jamanetworkopen.2019.7700 (Reprinted) July 26, 2019 1/14

Downloaded From: https://jamanetwork.com/ on 09/22/2019

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.7700&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.7700


Abstract (continued)

CONCLUSIONS AND RELEVANCE For at least half of the patients in this study, MBMP appeared to
predict biomarker expression with noninferiority to IHC. Results suggest that prediction accuracy is
likely to improve as data used for training expand. Morphological-based molecular profiling could
be used as a general approach for mass-scale molecular profiling based on digitized H&E-stained
images, allowing quick, accurate, and inexpensive methods for simultaneous profiling of multiple
biomarkers in cancer tissues.
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Introduction

Since the birth of modern pathology, identification of molecular markers in tissues has relied on
chemical processes. Immunohistochemistry (IHC) using monoclonal antibodies has become the
workhorse of molecular phenotyping, despite its marked limitations: it is time consuming, costly, and
highly dependent on tissue handling protocols, reagents, and expert laboratory technicians.
Moreover, interpretation of the results is primarily visual and relies on pathologists’ subjective
interpretation.1-4

Artificial intelligence and machine learning technology are gaining ground in medicine because
of their unmatched ability to make accurate predictions. In pathology, machines that quickly identify
distinctive histomorphological features can now differentiate between neoplastic and nonneoplastic
lesions,5-7 identify metastasis in lymph nodes,8 and perform tumor grading.9 Machines have been
shown to predict clinical data from biopsy images by identifying morphological features that were
unseen by humans.5,10 As such, Beck et al11 showed that the prognosis of patients with breast cancer,
traditionally determined by a clinicopathologic multifactorial model, could be predicted from
hematoxylin-eosin (H&E)–stained histological images of cancer specimens by using machine
learning.

We explored whether the molecular profile of cancer is encoded in histomorphological
structures that are beyond human apprehension. For this task, we applied machine learning methods
to a process we term morphological-based molecular profiling (MBMP) for robust determination of
molecular expression based on H&E-stained images. We then applied MBMP on a publicly available
archive of breast cancer specimens to explore the associations between features in tissue
morphology and expression of multiple molecular biomarkers.

With the advantages of a digital method, MBMP may be able to address innate problems of
traditional molecular profiling techniques. In breast cancer, for example, an estimated discrepancy as
high as 19% is reported for estrogen receptor (ER) estimation by central or peripheral laboratories,
when using different antibody clones, or when following various tissue-processing protocols.12-16

Automated digital methods could eliminate some of these problems and improve diagnostic
accuracy and patient care. Once established, MBMP could be trained to simultaneously predict the
expression of multiple biomarkers, thus allowing a global approach for mass-scale biomarker
expression prediction. By portraying molecular pathways that drive cancer progression from a
completely different perspective, MBMP might provide an additional tool for personalized treatment
tailoring against cancer.

Methods

Ethical Review and Reporting Guideline
This study was based on data made publicly available by the Genetic Pathology Evaluation Centre,
Vancouver, British Columbia, Canada. All research at the Genetic Pathology Evaluation Centre is
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performed in accordance with institutional and provincial ethical guidelines. Because the data did not
include patient contact or medical record review, informed consent was not required. This study
follows the Standards for Reporting of Diagnostic Accuracy (STARD) reporting guideline.

Data Processing and Participants
The database was composed from a publicly available tissue microarray (TMA) library, published by
Genetic Pathology Evaluation Centre. All data can be found on http://bliss.gpec.ubc.ca/ (libraries 01-011
and 02-008), http://www.gpecimage.ubc.ca/, and https://tma.im/tma_portal/C-Path/. Details about
the scanner, image resolution, eligible patients, and cut points used in this work can be found in
eMethods 1 and eTable 1 in the Supplement.

Exploring Correlations: Experimental Design Overview
To explore whether correlation exists between the morphological features of the tumor and
molecular biomarker expression, we developed a learning-based model for automatic analysis of
TMA images (eFigure 1 in the Supplement). In this model, the image was first divided into small
regions termed superpixels.17 Second, within each superpixel, different local arithmetic operations
were performed using a feature extraction pipeline (eFigure 2 in the Supplement). Next, we
calculated a global mean across each local feature to obtain a set of features per image. Because each
patient had multiple TMA images, the mean of these features was calculated across the images to
obtain a set of 1296 features per patient. Finally, an L1 regularized logistic regression was trained to
predict the dichotomized molecular biomarker expression (positive or negative) of a molecule in
question from the feature vector. When training the classifier, we balanced the data by replicating the
minority class of patients.

Predicting Molecular Expression: Experimental Design Overview
We adapted a state-of-the-art deep convolutional neural network (CNN) to predict dichotomized
molecular expression solely from H&E-stained histological images. The proposed model was based
on the residual network (ResNet)18 architecture (eFigure 3A in the Supplement) and was trained to
predict the molecular expression from a single H&E-stained image. The ResNet unit takes a 512 × 512-
pixel H&E-stained image as an input without any preprocessing and produces 64 features that
encode it. Unlike the feature extraction pipeline, these features are not constrained to predefined
arithmetic operations. Alternatively, the ResNet learns the operations that are optimized to the set
goal. We used 2 ResNet units to construct an inference pipeline (eFigure 3B in the Supplement).
Given an H&E-stained image, 64 features were produced from each ResNet and concatenated into a
set of 128 features. These features replaced the feature extraction pipeline presented in eFigure 2 in
the Supplement. As before, an L1 regularized logistic regression was trained to predict the molecular
expression from the features.

The inference pipeline outputs a score r per image that represents the probability that the
molecule in question is expressed. For patients with multiple TMA images, we calculated the mean of
the features across all images to obtain a per-patient r score (details in eMethods 2 in the
Supplement). We defined Tl and Th as low and high thresholds, respectively, holding the condition
0 < Tl � Th < 1, that can be tuned to adjust the confidence of the prediction. The molecular
expression was predicted as negative for r < Tl and positive for Th < r, whereas cases with Tl < r < Th

were considered inconclusive. A larger gap between the thresholds is likely to improve the specificity
and sensitivity of the system at the expense of increasing the percentage of inconclusive
classifications. We experimented with different settings of thresholds and show the results in the
Results section.

Implication of the Data Set on the System’s Performance
We characterized the association between the prediction performance and the database used in
terms of cohort size, image resolution, number of TMA images per patient, and image cut size. To this
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end, we randomly selected a subset of patients from cohort 2. We changed the resolution and cut
size of the H&E-stained images and the number of TMA images per patient used for analysis (details
in eMethods 3 in the Supplement). We used the feature extraction pipeline to extract features and
predict the expression of Ki-67, ER, PR, and ERBB2 (formerly HER2). We then repeated only the
TMA-images-per-patient experiment using the CNN-based pipeline for ER status prediction for
both cohorts.

Response Maps
One of the major limitations of CNNs is that the learning procedure can be considered a “black box”
in the sense that tracking down the intuition behind it might be impossible. To shed light on the
learning mechanism, we designed our CNN to produce a response map that revealed the
contribution of each area in the H&E-stained image to the final predicted r score (eFigure 4 in the
Supplement).

The MBMP Process
Morphological-based molecular profiling is a CNN-based image analysis protocol that is aimed to
predict molecular expression from H&E-stained specimens. The process described in the Methods
section consists of the following 4 stages: data collection, training of the primary network, training of
the validation network, and a final inference and decision stage (full description in eMethods 4 in the
Supplement).

Statistical Analysis
Data were collected and analyzed from July 1, 2015, through July 1, 2018. We used the area under the
receiver operating characteristics curve (AUC), accuracy, balanced accuracy, positive and negative
predictive values, and P < .01 with a 1-tailed hypothesis test indicating statistical significance as our
statistical measures. The receiver operating characteristics curves were plotted as sensitivity vs
specificity. Balanced accuracy is defined as the mean of sensitivity and specificity and is a useful
measure when data are imbalanced. Likelihood ratio χ2 tests and P values for multiple logistic
regression and associations for stratification by percentage of ER-positive cells were performed using
the likelihood-ratio test in JMP software, version 14.0 (SAS Institute Inc). The Bhattacharyya
distance19 (DBC) was used to measure similarity between distributions. The logistic regression was
implemented using the Glmnet package in Matlab, version R2013B (MathWorks).

Results

Participants and Database
The database originated from 2 cohorts, including a total of 5356 patients with breast cancer who
had 20 600 digitized H&E-stained histological images. Cohort 1 (library 01-011) included 412 patients.
Each patient had 14 H&E-stained TMA images and annotations for ER expression. Some of the images
have masks segmenting epithelial and stromal compartments.11,20 Cohort 2 (library 02-008)
included 4944 patients. Each patient had 3 H&E-stained TMA images, 1 IHC-stained TMA image for
ER using SP1 antibody, and annotations for 19 biomarkers. The median age at diagnosis was 61 years
for cohort 1 and 62 years for cohort 2, and the median follow-up was 12.0 years and 12.4 years,
respectively.

Association Between Biomarker Expression and Tumor Morphology
We used the proposed model to extract features from each patient in cohort 2. We assessed the
correlations between tumor morphology, encoded as the extracted features, and the expression of
19 distinct biomarkers by 10-fold cross-validation, in terms of accuracy, balanced accuracy, and P
value. For all 19 biomarkers evaluated, the output prediction scores were significantly correlated with
the molecular expression (eTable 2 in the Supplement). The prediction performance did not broadly
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differ for markers expressed at the nucleus (Ki-67 and ER), the cytoplasm, or the plasma membrane
(epidermal growth factor receptor and proto-oncogene tyrosine-protein kinase receptor Ret). In
addition, markers expressed at the tumor stroma (FOXP3 and CD8) or epithelial compartments (PR
and insulinlike growth factor type 1 receptor) had no noticeable difference. Understandably, Ki-67
scored highest, because its expression is associated with high-grade tissue architecture that is easily
distinguishable by pathologists and machines.21,22 Unexpectedly, FOXP3 and CD8, immune markers
less obviously associated with distinctive morphology, also received high prediction accuracies. This
analysis showed that the expression of molecular markers is phenotypically reflected as subtle motifs
in tissue morphology. These previously unobserved patterns were identified by a suited learning
model, suggesting that artificial intelligence could be used to predict molecular expression directly
from H&E-stained images.

Predicting ER Expression
To investigate the possibility of biomarker expression prediction from tissue histomorphology, we
trained the proposed CNN model to predict the expression of ER from H&E-stained histological
images. We chose to experiment on ER owing to its significance in breast cancer and its large
representation in the available data, that is, 19 331 H&E-stained images of 4933 patients in both
cohorts (eTable 1 in the Supplement). Recent studies with robust anti-ER antibodies suggested that
the subgroup of ER-negative/PR-positive tumors does not actually exist and represents false-
negative IHC stain interpretations.23 To improve the credibility of the evaluation, this equivocal
subgroup of patients was omitted from the primary analysis (85 of 2131 patients [4.0%] in cohort 2)
and was then assessed separately.

The trained CNN was used to obtain r scores, per image and per patient, in 6-fold cross-
validation (details in eMethods 5 in the Supplement). These scores were used to create receiver
operating characteristics curves by fixing Tl = Th and swiping their value between 0 and 1. For each
value, the specificity and sensitivity were computed by comparing the resulting predictions to the
ground-truth ER expressions (Figure 1). Overall, the deep CNN-based features had a better AUC for
ER prediction than the feature extraction pipeline–based features. A combined score of multiple TMA
images yielded better results than a single image. Given that cohort 2 included 10 times more
patients than cohort 1, the better AUC for this cohort was not surprising.

Figure 1. Prediction of Estrogen Receptor Positivity Using Deep Convolutional Neural Network
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microarray image or 3 tissue microarray images in cohort 2 and 14 images in cohort 1). The area under the receive operating characteristic (AUC) is indicated for each case.
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We set the thresholds to Tl = 0.25 and Th = 0.75, resulting in prediction of 105 of 207 validation
patients (50.7%) in cohort 1 (positive predictive value, 97%; negative predictive value, 68%;
accuracy, 91%) and 1059 of 2046 validation patients (51.8%) in cohort 2 (positive predictive value,
98%; negative predictive value, 76%; accuracy, 92%) and to Tl =0.50 and Th = 0.50 (resulting in
prediction of all patients) and summarized the results of CNN-based MBMP prediction of ER
(eTable 3 in the Supplement). In addition, we summarized the concordance rates of MBMP (with
thresholds Tl = 0.25 and Th = 0.75) and IHC using different US Food and Drug Administration–
approved antibody clones and the concordance rates of IHC and previously used ligand binding
assays (Table). This analysis showed that with adequate sensitivity thresholds, MBMP had
comparable accuracies to direct molecular assays for ER detection, with noninferiority to traditional
IHC (positive predictive value, 91%-98%; negative predictive value, 51%-78%; accuracy, 81%-90%).

We used multiple logistic regression to assess the added value of the r scores in the context of
other clinical and molecular factors (eTable 4 in the Supplement). In cohort 1, the obtained r scores
were significantly associated with ER status (likelihood ratio χ2 = 28.81; P < .001) independent of
prognosis and all other clinical and molecular features. In cohort 2, the r scores (likelihood ratio
χ2 = 86.12; P < .001), PR (likelihood ratio χ2 = 251.03; P < .001), epidermal growth factor receptor
(likelihood ratio χ2 = 33.48; P < .001), insulinlike growth factor type 1 receptor (likelihood ratio
χ2 = 31.13; P < .001), GATA3 (likelihood ratio χ2 = 27.09; P < .001), αB-crystallin gene 4000
(likelihood ratio χ2 = 26.43; P < .001), P-cahedrin (likelihood ratio χ2 = 13.46; P = .001), p53
(likelihood ratio χ2 = 11.07; P = .003), and HER4 (likelihood ratio χ2 = 10.51; P = .005) were each
significantly associated with the ER status. The rest of the factors were not significant independent
predictors of the ER status in this model.

Performance and the Amount of Training and Validation Data
The resulting AUC continuously improved without reaching saturation for each variable and
biomarker, implying that training on more data would improve biomarker prediction accuracy
(Figure 2). Unlike the other variables, the TMA-images-per-patient variable is changed at inference
time. In agreement with Figure 1, increasing the number of images per patient markedly improved
the system’s performance without the need to retrain the model for the logistic regression and for
the CNN (Figure 2D and E). Unlike standard molecular assays, MBMP is a data-driven approach. This
analysis showed the potential of MBMP to outperform traditional laboratory techniques for
molecular quantitation, given enough data.

Table. Performance of MBMP and Comparison With Other Methodsa

Source Data Set
Assay Methods Compared
(Antibody) PPV, % NPV, % Sensitivity, % Specificity, % Accuracy, %

Proposed method Cohort 1 (01-011) MBMP and IHC (SP1) 98 68 93 90 92

Proposed method Cohort 2 (02-008) MBMP and IHC (SP1) 97 76 93 87 91

Cheang et al,14 2006 Cohort 2 (02-008) IHC (SP1) and DCC 98 62 86 92 87

Cheang et al,14 2006 Cohort 2 (02-008) IHC (1D5) and DCC 97 51 78 92 81

Cheang et al,14 2006 Cohort 2 (02-008) IHC (1D5) and IHC (SP1) 97 78 88 94 90

Barnes et al,24 1996 Their own data set LBA and IHC (1D5) NA NA NA NA 81

Regan et al,25 2006 IBCSG LBA and IHC (1D5) NA NA NA NA 88

Harvey et al,26 1999 San Antonio tumor bank LBA and IHC (1D5) NA NA NA NA 86

Hammond et al,12 2010 IBCSG premenopausal Primary institution by
LBA/ELISA and central
testing by IHC (1D5)

91 63 NA NA 82

Hammond et al,12 2010 IBCSG postmenopausal Primary institution by
LBA/ELISA and central
testing by IHC (1D5)

93 73 NA NA 88

Abbreviations: DCC, dextran-coated charcoal; ELISA, enzyme-linked immunosorbent
assay; IBCSG, International Breast Cancer Study Group; IHC, immunohistochemistry;
LBA, ligand binding assay; MBMP, morphological-based molecular profiling; NA, not
applicable; NPV, negative predictive value; PPV, positive predictive value.

a Concordance rates between MBMP low and high thresholds (low, 0.25; high, 0.75) and
different criterion standard assays for estrogen receptor detection were obtained from
Hammond et al12 and Chean et al.14 The statistical measures were computed
considering the second method as the ground truth.
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MBMP's r Score and ER Expression in Breast Cancer
The proposed CNN can be interpreted as a function that maps H&E-stained images to a score r in the
interval (0,1), which measures the morphological signal indicative of molecular expression. Figure 3A
and B demonstrate the positive association between the r scores and ER status. We applied the
system to the excluded group of patients with ER-negative/PR-positive tumors in cohort 2 and added
another curve for their resulting r scores (Figure 3A). Interestingly, the distribution of r scores for the
ER-negative/PR-positive group resembled the distribution of ER-positive tumors (DBC = 0.03) and
not ER-negative/PR-negative tumors (DBC = 0.25). In cohort 2, 1284 of 1558 patients with ER-positive
tumors (82.4%) had r scores greater than 0.5, compared with 94 of 488 patients with ER-negative/
PR-negative tumors (19.3%). 67 of 85 patients with ER-negative/PR-positive tumors (78.8%) had r
scores greater than 0.5, almost similar to rates for patients with ER-positive tumors. This analysis
supported the claim that among patients with ER-negative/PR-positive tumors, IHC failed to detect
the ER.2,23

The r scores stratified by the percentage of cells expressing ER, for patients with ER-positive
tumors, demonstrated a positive association with the percentage of ER-positive cells in the tissue
(likelihood ratio χ2 = 53.64; P < .001) (Figure 3C). Thus, morphological surrogates for molecular
expression could not only be identified but also could be quantified by MBMP, matching to ER’s
occurrence in the tissue. This process might also explain why the patients with ER-negative/PR-
positive tumors had lower r scores than patients with ER-positive tumors; failure to detect estrogen

Figure 2. Amount of Data vs System Performance
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For cohort 2 (A-D), the resulting area under the receiver operating characteristics (ROC)
curve (AUC) for prediction of Ki-67, estrogen receptor (ER), progesterone receptor (PR),
and ERBB2 status used the proposed logistic regression classifier. The AUC is plotted
with respect to the biopsy cut size, the number of patients in the cohort, the image
resolution, and the number of tissue microarray (TMA) slides per patient. For both

cohorts (E), the resulting AUC for prediction of ER status used the proposed deep
convolutional neural network. The AUC is plotted with respect to the number of TMA
images per patient for cohorts 1 and 2. In cohort 2, 3 TMA images were available for each
patient, whereas in cohort 1, 14 TMA images were available per patient.
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is more likely to occur when the percentage of ER-positive cells is low. The ER-positive cells had failed
to be detected in these patients’ IHC-stained TMA images, and thus, their mean r scores were lower.

We next stratified the r scores of the patients in cohort 1 by their grade (Figure 3D). As expected,
low-grade tumors had higher r scores than high-grade tumors. However, even in the rare cases of
high-grade malignant neoplasms that are ER positive (box in Figure 3), the system identified
morphological patterns that strongly imply an ER-positive status. This finding suggests that
morphological patterns other than those reflected in the tumor grade are used by the system to
determine ER expression.

Estrogen Expression Could Be Learned From Stromal Regions
Examination of the response maps did not reveal specific histological features that correlate to
hormonal expression, such as inflammatory infiltrate or matrix variability. Unsurprisingly, prediction
of ER status seemed to be learned based on the epithelial areas of the specimen (Figure 4). However,
ER expression was also learned from stromal parts of the specimens. We used cutout stromal and
epithelial regions of 243 test images from cohort 1 and applied the response map inference pipeline
to the cutout segments independently. The prediction performance was obtained for the stromal
regions (accuracy, 0.8; AUC, 0.75; balanced accuracy, 0.66) and for the epithelial regions (accuracy,
0.78; AUC, 0.77; and balanced accuracy, 0.69). We computed P values as the probability for a random

Figure 3. The Resulting r Scores for Prediction of Estrogen Receptor (ER) Positivity in All Patients
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the tumor grade. Cases of high-grade malignant neoplasms for which the system could
identify ER-associated morphological signal are boxed (D). PR indicates progesterone
receptor.
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classifier to obtain the indicated balanced accuracy or higher (stromal regions, P = .003; epithelial
regions, P = .001). These correlations might help to explain previous findings suggesting that stromal
morphology contains interpretable clues for patient prognosis.27-29

Discussion

We have developed a computerized system for prediction of molecular markers of cancer by analysis
of tissue histomorphology. For such a system to be feasible, a correlation must first be established
between tissue morphology and molecular expression of the epitope in question. Our analysis of

Figure 4. Hematoxylin-Eosin (H&E)–Stained Images With Corresponding Response Maps
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Higher color intensity corresponds to a stronger contribution. The resulting r score is
indicated for each case. The immunohistochemistry (IHC) images were never shown to
the system.
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breast cancer tissue specimens revealed that all the assayed biomarkers had identifiable signatures
in tissue morphology, regardless of the marker’s subcellular (nuclear, cytoplasmic, or membranal) or
tissue (stromal or epithelial compartments) localization (eTable 2 in the Supplement). Moreover,
biomarkers that were more likely to be influential in the biology of breast cancer had the highest
prediction accuracies. This finding demonstrated the credibility of the results, because the molecular
pathways that govern the tumor’s behavior were expected to leave a more profound histological
fingerprint.

We then tailored deep CNN to predict biomarker expression from H&E-stained histological
images and used ER as a showcase on which to test the system. Our results show that for at least half
of the patients, MBMP had comparable accuracy to IHC in predicting ER expression (Table).
Moreover, the r scores were correlated with the percentage of ER-presenting cells as determined by
IHC, demonstrating that the morphological signal indicative of molecular expression could be not
only identified but quantified. The ability to identify patients who may benefit from antihormonal
therapy by IHC had a marked effect on the survival of patients with breast cancer.30 However, IHC
has inherent and technical limitations that may come down to considerable inconsistencies in ER
evaluation.12-15,31 In contrast, MBMP escapes technical issues such as fixation or antigen retrieval,
obsoletes the need for subjective human interpretation, and avoids false-negative findings due to
splice variants missing the antibody binding site. Such advantages of MBMP over IHC could be
demonstrated for the group with ER-negative/PR-positive tumors, who are widely considered to
have an ER-positive phenotype but with false-negative findings of IHC staining.2,23 Our results
indicated that patients with ER-negative/PR-positive tumors share more similarities with patients
with ER-positive tumors than with their ER-negative/PR-negative counterparts, in support of
antihormonal therapy for this group of patients.

The interpretability problem of artificial neural networks poses major challenges and
complicates supervision of the system aimed to identify prediction errors.32,33 To trace the learning,
we used an approach that highlights hot spots in the image, from which MBMP learned the most to
reach its conclusion. The response maps we created from segmented images demonstrate that
analysis of the tumor stroma independently contributed to the prediction of ER receptor expression.
These results may explain findings by Beck et al11 that prognosis can be predicted by analysis of
stromal elements, because patients with ER-positive tumors generally have better prognosis.
Although we could not identify meaningful histomorphological structures that the system used to
make its prediction, the response maps may provide a future avenue to supervise the credibility of
the system’s responses through dedicated analysis of the predictive area in each image.

Limitations
The data set used for this work was unique in its quality and quantity, allowing successful
implementation of a data-thirsty method such as CNN. However, the data set itself was the major
caveat of this work. It originated from a single institution in Canada, included only TMA images rather
than whole-slide specimens, and may have been too small to fully exploit the potential of neural
networks. Thus, for MBMP to be universally applicable, a multi-institutional shared database of
annotated H&E-stained images needs to be erected, with suitable mechanisms for data
anonymization and sharing.34,35 For newly added cohorts, a system calibration phase will be needed,
which consists of training another cohort-specific ResNet on a set of institution-scanned H&E-stained
images and their corresponding annotations. The TMAs may be simpler to analyze than whole-slide
images because humans predefined regions of interest to be studied. However, because more
sample images and a larger cut size were associated with superior performance, and because the
system learned from the stromal regions and not only from cancerous structures, it is safe to assume
that the use of whole-slide images would improve the performance of the system. Moreover, current
machine learning tools can now automatically identify cancerous regions in whole-slide images
noninferiorly to pathologists.36,37 The sheer amount of data used for neural network learning is
probably the most influential factor for successful biomarker predictions.
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Conclusions

As our understanding of molecular origin of diseases expands, an increasing number of molecular
markers are expected to be quantified in each pathologic specimen handled by laboratories. We
envision MBMP technology playing a pivotal role in the pathologic processing and analysis workflow.
As in the case of ER, other molecular markers could be accurately predicted in parallel. For those who
obtain high confident r scores, molecular identification using direct assays might be unnecessary,
because MBMP has noninferior accuracy to IHC in this population. Morphological-based molecular
profiling could also be used as a screening phase that predicts activation of culprit molecular
pathways in cancer, assisting pathologists in the choice of downstream molecular analysis. Finally, in
the developing world and in circumstances in which reliable IHC is out of reach, MBMP could serve
as an essential tool for physicians to guide the choice of therapeutic regimens and choose
targeted drugs.
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