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Abstract. In the past several decades, many attempts have been made
to model synthetic realistic geometric data. The goal of such models is to
generate plausible 3D geometries and textures. Perhaps the best known
of its kind is the linear 3D morphable model (3DMM) for faces. Such
models can be found at the core of many computer vision applications
such as face reconstruction, recognition and authentication to name just
a few.

Generative adversarial networks (GANs) have shown great promise in
imitating high dimensional data distributions. State of the art GANs are
capable of performing tasks such as image to image translation as well as
auditory and image signal synthesis, producing novel plausible samples
from the data distribution at hand.

Geometric data is generally more difficult to process due to the inherent
lack of an intrinsic parametrization. By bringing geometric data into
an aligned space, we are able to map the data onto a 2D plane using
a universal parametrization. This alignment process allows for efficient
processing of digitally scanned geometric data via image processing tools.

Using this methodology, we propose a novel face synthesis model for gen-
eration of realistic facial textures together with their corresponding ge-
ometry. A GAN is employed in order to imitate the space of parametrized
human textures, while corresponding facial geometries are generated by
learning the best 3DMM coefficients for each texture. The generated tex-
tures are mapped back onto the corresponding geometries to obtain new
generated high resolution 3D faces.

1 Introduction

In recent years, deep learning has gained popularity in many research fields as
well as practical applications. Deep networks are powerful generalization tools
which are able to answer complex questions about data samples in a surprisingly
effective manner. It has been well established that in order to train highly com-
plex models, it is necessary to obtain extensive amounts of training data which
closely approximates the complete data distribution.
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Data augmentation is a popular method for extending the size of a given
dataset. The idea is to modify the training examples in such a way that keeps
their semantic properties intact. For instance, one can apply basic geometric
distortions or add noise to a photo of an object in a way that leaves the object
recognizable. Though helpful in many cases, these simple data augmentation
methodologies often fail to address more complex transformations of the data
such as pose, lighting and non-rigid deformations. An example of a more ad-
vanced type of data augmentation is demonstrated by [1], who observed that
augmenting facial data by applying geometric and photometric transformations
increases the performance of facial recognition models.

A different trend in data acquisition and augmentation for training deep
networks is to synthesize training examples using a simulator such as [2]. The
simulator should be able to model and generate a rich variety of samples which
can be constructed under controlled conditions such as pose and lighting. How-
ever, synthetically generated examples often look unrealistic and diverge from
the distribution of natural data. Methods such as [3] that used unrealistic syn-
thetic data for training their models had to contend with difficulties when ap-
plying their models onto real data. A more realistic simulator that captures the
real world data statistics more accurately would be expected to allow for easier
generalization to real data.

In this line of works, recent papers have focused on making synthetic data
more realistic by using generative adversarial networks (GANs). Commonly, the
simulated data is used as an input to the GAN which can produce a more
realistic sample from the synthetic one [4,2]. Taking this approach, the generated
samples may appear realistic, however their semantic properties might be altered
during the process, even when imposing a loss which penalizes the change in the
parameters of the output.

Reducing the scope to modeling photo-geometric data, one of the most com-
monly used models for representation and synthesis of geometries and textures
is the 3DMM [5] (see section 2), originally proposed in the context of 3D human
faces. Using a simple linear representation, 3DMM is capable of providing various
new samples of the data it is constructed from. However, the generated samples
are unrealistic in appearance and since the generation model follows a Gaus-
sian distribution, non-plausible samples may easily result from the generation
process.

Here, we propose a new realistic data synthesis approach for human faces.
The suggested approach does not suffer from indirect control over various desired
attributes such as pose and lighting, yet still produces realistic looking plausible
models, in contrast to [5]. Moreover, in contrast to [1,6] the proposed model
is not limited to producing new instances of existing individuals, but instead is
capable of generating new plausible identities. This synthesis would be beneficial
for various applications such as face recognition and biometric verification, as
well as face reconstruction [7,3,8].

In particular, we constructed a dataset of 3D facial human scans. by aligning
the facial geometries we are able to map the facial textures into 2D images
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using a universal parametrization. These images form the training data for a
GAN of facial textures which is used to produce new plausible textures. Finally,
each texture is coupled with a tailored geometry by learning the relation between
texture and geometry in the dataset. To the best of our knowledge, the suggested
model is the first to realistically synthesize both texture and geometry of human
faces. Although in this paper we apply our methodology to human faces, the
general framework is not limited to this problem alone.

The rest of the paper is arranged as follows. In section 2 we describe the
3D morphable model (3DMM) which we use throughout the paper. In section 3
we describe our main data processing pipeline. In section 4 we describe the
generative adversarial networks we used in the proposed pipeline. In section 5
we describe several methods of generating plausible geometry for a given texture.
In section 6 we describe our experimental evaluations of our model. In section 7
we review the main paper contributions as well as discuss our experimental
results and their conclusions.

2 3D Morphable Model

In [5] Vetter and Blanz introduced a model by which the geometric structure and
the texture of human faces are linearly approximated as a combination of prin-
cipal vectors. This linear model, known as the 3D Morphable Model (3DMM),
was constructed by 3D scanning of several hundreds of subjects and computing
dense registration between them. Classical principal component analysis was ap-
plied to the corresponding scans in order to obtain the principal vectors. Then,
in order to estimate the 3D face given its 2D projection, they proposed to use an
analysis-by-synthesis approach, which alternates between rendering the projec-
tion and re-estimating the 3D geometry, texture, and illumination parameters
in a gradient descent optimization scheme.

In the 3DMM model, a face is represented by a geome-
try vector g = (x̂1, ŷ1, ẑ1, x̂2, ...ŷm, ẑm) ∈ R

3m and a texture vector

t = (r̂1, ĝ1, b̂1, r̂2, ...ĝm, b̂m) ∈ R
3m that contain the coordinates and colors

of its m vertices, respectively. Given a set of n faces, each represented by
geometry gi and texture ti vectors, construct the 3m × n matrices G and T by
grouping all geometry and texture vectors into their columns, in the same order.
Since all faces are in correspondence, Principal Component Analysis (PCA) [9]
can be applied in order to model the data in a basis representation. To that
end, denote by Vg and Vt the 3m × n matrices that contain the left singular
vectors of ∆G = G− µg✶

T and ∆T = T − µt✶
T , respectively, where µg and µt

are the average geometry and texture of the faces and ✶ is a vector of ones.

We assume that the columns of Vg and Vt are ordered by the value of the
singular values in a descending manner. The texture and geometry of each face
in the model can then be defined by the linear combination

gi = µg + Vgαgi , ti = µt + Vtαti , (1)
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where αgi and αti are the coefficients vectors, obtained by αgi = V T
g (gi − µg)

and αti = V T
t (ti−µt). Following this formulation, one can generate new faces in

the model by changing the texture and geometry coefficients. In order to obtain
plausible faces from the model, the distribution of faces is assumed to follow a
multivariate normal distribution, so that the probability for a coefficient vector
α is given by

P (α) ∼ exp

{

−
1

2
αTΣ−1α

}

, (2)

where Σ is a covariance matrix that can be empirically estimated from the data,
and for simplicity assumed to be diagonal.

Lastly, in order to obtain robust results when synthesizing new faces, only
the first k ≪ n basis vectors and corresponding coefficients should be considered
in the linear combination. That is, higher order basis vectors, corresponding to
smaller PCA singular values, do not have enough data to faithfully estimate
their values. Moreover, the number of 3D faces in a given dataset is limited
and typically cannot cover all high resolution geometries and textures. Taken
together, the above linear combination would most likely result in a smooth
geometry and texture.

Recently, the 3DMM model was integrated with convolutional neural net-
works for data augmentation and for recovering pose variations of faces in im-
ages [8,7,3,4]. However, faces rendered using the above PCA model tend to be
smooth and non-realistic. Using them for data augmentation would require addi-
tional steps such as transfer learning or designing additional networks to bridge
this gap. Additionally, the multivariate normal distribution assumption rarely
follows the true distribution of the data. In Figure 1a we show examples of faces
synthesized using the 3DMM model while considering k = 200 basis vectors
with corresponding random coefficients for each face. In Figure 1b, we plot the
first two coefficients of real faces, computed by projecting the faces onto the
3DMM basis, and compare them to the coefficients of the synthesized 3DMM
faces, showing the gap between the real and the synthesized distributions.

3 Data Acquisition Pipeline

Our main data acquisition pipeline was designed to align 3D scans of human
faces vertex to vertex, and map their textures onto a 2D plane using a predefined
universal transformation. This process is comprised of four main stages, depicted
in Figure 2: data acquisition, landmark annotation, mesh alignment and texture
transfer. In the following section we describe each stage in detail.

Our data construction pipeline begins with the acquisition of high resolution
geometric facial scans of human subjects. Due to privacy concerns, we are not
permitted to share or display the raw data directly. Motivated by [10,11], we
collected roughly 5000 scans from a wide variety of ethnic, gender, and age
groups, using a 3DMDTMscanner. Each subject was asked to perform five distinct
expressions including a neutral one. The acquired data went through a manual
selection process which is intended to filter out corrupted meshes.
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(a) (b)

Fig. 1: (a) Faces synthesized using the 3DMM linear model. (b) First two PCA
coefficients of real and 3DMM generated faces. Left - Real faces distribution.
Right - 3DMM faces distribution.

Fig. 2: Data preparation pipeline, left to right: Real scan geometry with demo
texture. 3D facial landmarks are added. A template mesh is deformed to fit
the scan guided by the landmarks. Texture is transferred onto the deformed
template. The texture is mapped to a 2D plane using a universal mapping for
the entire dataset.
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Once the data was collected, we proceeded to produce 3D facial landmark
annotations in order to guide the subsequent alignment stage. We used Multi-
pie 68 standard facial feature points [12], out of which we discarded the jaw
and inner lip due to their instability. The remaining 43 landmarks were added
to the meshes semi-automatically by rendering the face and using a pre-trained
facial landmark detector [13][14] on the 2D images. The resulting 2D landmarks
are back-projected onto the 3D mesh. In order to achieve an even more reli-
able annotation process, a human annotator manually corrected the erroneous
landmarks.

During the alignment stage of the pipeline we performed a vertex to vertex
correspondence between each scan and a facial template mesh. The alignment
was conducted by deforming a template face mesh according to the geometric
structure of each scan, guided by the previously obtained facial landmark points.
The deformation process minimizes the energy term in [5]. The energy is made up
of 3 terms which contribute to the final alignment. The first term accumulates the
distances between the facial landmark points on the target and on the template.
The second term aims to minimize the distance between all the mesh points
on the template to the target surface. The third term serves as a regularization,
and penalizes non-smooth deformations. The energy is minimized using gradient
descent until convergence. This alignment process is the cornerstone of our data
preparation pipeline.

Once the deformed template is properly aligned with the original scan, the
texture is transferred from the scan to the template using a ray casting technique
built into the animation rendering toolbox of Blender [15]. The texture is then
mapped from the template to a 2D plane using a predefined universal mapping
that was constructed once. As a result, the textures of all scans are semantically
aligned under a universal mapping. The semantic alignment simplifies the net-
work learning process, since the data is invariant with respect to the locations
of the facial parts within the image. In Figure 3 we show the resulting mapped
textures of the dataset.

Fig. 3: Flattened aligned facial textures.

4 GAN

Generative models which are able to mimic examples from a high dimensional
data distribution are recently gaining popularity. Such models are tasked with
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producing novel examples of data from a learned distribution. The first to pro-
pose such a model which is based on a deep neural network was [16], who dubbed
the term generative adversarial network (GAN). Recent advances in GANs have
shown promise in synthesis of audio signals [17], images [18], and image to im-
age translation [19,20]. Here, we use a GAN in a novel way to synthesize high
resolution realistic facial textures which can be fitted to 3D facial models. In
this section we will describe briefly the main idea and architecture of GANs in
general, and more specifically that of [18] which we adopt for our purpose.

A GAN is a special form of convolutional neural network which is designed
to generate data samples which are indistinguishable from the training set. The
GAN is comprised of two separate networks which are competing against each
other. The generator network aims to produce novel examples while the discrimi-
nator network aims to distinguish between the generated and real examples. The
generator network takes as input a random high dimensional normalized latent
code and produces a sample of the same dimension as the data which makes up
our training set. Ideally, the implemented loss should penalize deviation from the
true data distribution and encourage generated examples which follow it. This
loss, however, is highly complex and impractical to design manually. The way
to circumvent this problem is to construct the loss function as a dynamic net-
work which continually improves its assessment on how to distinguish between
the fake and real data samples. This is why the discriminator network which
is used as part of the loss is trained alongside with the generator. The key of
the GAN method is that the discriminator produces a gradient which can be
used to update the generator weights so that the generated samples are better
at confusing the discriminator. This results in a race between the generator and
discriminator, constantly improving each other as the training progresses. The
typical loss of a GAN can be formulated as the min max loss

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (3)

where G and D denote the generator and discriminator, x denotes the true data,
and z denotes the latent space representation. More sophisticated loss functions
have recently shown success in the training process. Some noteworthy examples
are Wasserstein loss [21,22] and least squares loss [23], which apply different
metrics to the computation of distances between data distributions.

Here we use a successful implementation of GAN dubbed progressive growing
GAN [18]. This architecture combines several novel contributions which improve
the training stability and the resulting image quality. The core idea is to con-
struct the generator and discriminator as symmetric networks. The generator
progressively increases the resolution of the feature maps at each stage until
reaching the output image size, while the discriminator gradually reduces the
size back to a single output. The training starts from the lowest resolution fea-
ture maps, and is guided by low resolution versions of the input data. After
a stabilization period, a new layer is added by mixing an up-scaled version of
the output emanating from the lower level feature maps, with the higher level
output. The mixing coefficient gradually gives more importance to the higher
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level features at the output, until the contribution of the up-scaled lower layer
is discarded completely. At this stage the new layer goes through a stabilization
phase, and so on. According to [18], this is the main contribution to the training
stabilization and improvement of results. Here, we trained the aforementioned
GAN to learn and imitate the previously obtained aligned facial textures. The
new synthetic facial textures generated by the GAN are shown in Figure 4.

Fig. 4: Facial textures synthesized by GAN.

5 Synthesizing the Geometry

A popular way to deal with 3D textured object representations is to consider a
discrete version of their geometry, such as a polygon mesh, while keeping their
texture resolution high by mapping the texture from an image to the mesh. The
observation that the geometry discretization of the object has a small impact
on its appearance can be exploited for the sake of our geometry synthesizer.
Figure 5a demonstrates that objects with smooth geometry and high resolu-
tion texture appear to be visually similar to their high resolution geometry and
texture versions. This shows that the facial texture has a greater influence on
perceived appearance than their geometry. Following this assumption, we pro-
pose to exploit the 3DMM discussed in section 2 to generate the geometries of
our faces as a linear combination of the first k ≪ n geometry basis vectors as

g = µg +

k
∑

i=1

αgivgi, (4)

where vgi is the i-th vector of the geometry basis Vg and {αgi}
k
i=1 are the coef-

ficients that define the geometry.
In this section we explore several possible methods to find plausible geom-

etry coefficients for a given texture. In each subsection we present one of the
methods and briefly discuss their strengths and weaknesses. Figure 5b makes a
qualitative and quantitative comparison between the various methods. For this
comparison, we measure the distance between recovered geometries and the true
corresponding geometries on a held-out set of real samples that were not included
in the geometry recovery process, using a 10-fold cross validation. The distance
is measured by the average of ‖gr − gt‖L2

for all faces, where gr and gt are the



Facial geometry synthesis by GAN 9

recovered and true geometries. The outcome of the comparison is presented for
each one of the methods in Figure 5b.

(a) (b)

Fig. 5: Left: Perceptual quality comparison between reduction in geometry detail
(k = 200 geometry basis vectors) vs reduction in texture detail. Geometric detail loss
is very difficult to perceive while texture detail loss is detrimental to the final outcome.
Right: Two synthesized textures mapped onto different geometries. Each geometry is
produced by a method discussed in section 5. (1) random geometry, (2) real geometry
from nearest real texture, (3) ML geometry, (4) LS geometry, (5) Neutral geometry.
The neutral geometry was obtained using the LS method. The L2 geometric error
tested by 10-fold cross validation is presented for each method at the top.

5.1 Random Geometries

The simplest way to choose the geometry coefficients is by exploiting the mul-
tivariate normal distribution assumption of the 3DMM in order to pick random
coefficients. Following the formulation in Equation 2, the probability of the co-
efficient αi is

P (αi) ∼ exp

{

−
α2
i

2σ2
i

}

, (5)

where σ2
i is the i-th eigenvalue of the covariance matrix of ∆G, which can be

also computed more efficiently as σ2
i = 1

n
δ2i , where δi is the i-th singular value of

∆G. Following that, we compute the singular values {δi}
k
1 of ∆G and randomize

a vector of coefficients from the above probability. The problem with picking a
random geometry for each face is that the correlation between the texture and
the geometry is ignored. For instance, facial texture could indicate a specific
ethnicity or gender which are related to specific geometric traits. The advantage
of this method is that it is very simple and fast, and many identities can be
created out of a single generated texture.
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5.2 Nearest neighbors

Given a facial texture, a simple way to obtain a geometry that is both plausible
and likely to fit the texture is by finding a face in the data with a similar texture
and then taking its geometry. Here, given a new facial texture generated by the
proposed pipeline, we find the face in the data with the most similar texture, in
terms of L2 norm between the 3DMM texture coefficient, and use its geometry
for our synthetic face. This would only require storing the 3DMM coefficients of
the training data. The resulting geometry would most likely fit the texture and,
moreover, will not loose its high frequencies. Nevertheless, geometries generated
in this manner would be constrained to a small set of possible geometries. Ad-
ditionally, the geometry will indeed retain accurate geometric details, but these
will not coincide with the subtle details of the generated texture. For example,
a texture of mole in the face would not have a corresponding curved geometry.

5.3 Maximum likelihood approach

Returning to the 3DMM formulation, one suitable way to obtain geometry co-
efficients that most likely fit the texture is by using a maximum likelihood ap-
proximation. The mathematical formulation regarding this approach is detailed
in the supplementary material.

5.4 Least squares approach

The maximum likelihood approach is typically used when a small amount of
data is available and one can have some assumptions on the distribution of the
data. When sufficient data samples are available, it is usually more beneficial
and straightforward to learn or estimate parameters using a least squares mini-
mization scheme. We start from the original 3DMM model defined in section 2.
Given a texture coefficient vector αt, we would like to estimate a plausible ge-
ometry coefficient vector αg. To that end, we group all coefficient vectors αt and
αg from our data into the columns of the matrices Ag and At and search for a
matrix W such that

loss(W ) = ‖WTAt −Ag‖F (6)

is minimized. The vanishing gradient of the above least squares minimization
problem, yields the solution W given as a closed form by

W ∗ = (AtA
T
t )

−1AtA
T
g = A+

t A
T
g . (7)

Given a texture t of a new synthesized face, one can first compute the texture
coefficient vector αt as αt = V T

t (t − µt), then compute its geometry coefficient
vector αg as αg = Wαt, and finally compute the geometry as g = Ṽgα̃g + µg,

where Ṽg and α̃g hold the first k vectors and coefficients of Vg and αg. It can be
seen in Figure 5b that the LS approach produces the lowest distortion results
among our tested methods. For this reason and due to its simplicity, we chose to
apply it during all of our subsequent experiments. It is worth mentioning that
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other applications may benefit from using one of the other methods according to
their objective. Our experimental results give another verification to the validity
of this approach, in terms of identity distribution and variation as presented in
section 6.

5.5 Neutral face geometries

The data we have worked with contains faces with a neutral and four other
expressions. When estimating the geometry using each of the above methods,
we consider all expressions as part of the model. Nevertheless, in some cases
one would like to only obtain faces with a neutral expression geometries. One
example for the necessity of the neutral pose face model is when the expression
is modified using the Blend Shapes [24] (See the Blend Shapes experiment in
section 6). The Blend Shapes model takes as input a neutral face and adds
linear combinations of facial expressions in order to span the space of possible
expressions.

To estimate the geometry for each of the above methods while constraining
it to a neutral expression, we suggest to simply replace any geometry gi in G

by the neutral geometry of the same identity in the dataset. Then, repeat the
process of any of the above methods. In this manner, we tie each of the textures,
regardless of its expression, to the neutral geometry of their identities rather
than to the actual geometry which includes the non-neutral expression.

6 Experimental results

Throughout this section, we use the proposed texture generation model and
the Least squares approach described in subsection 5.4 for generating the corre-
sponding geometries. The main advantage of our proposed method is that it can
be used to create many new identities, and each one of them can be rendered
under varying pose, expression and lighting. Given a facial texture synthesized
by our system, we extracted its neutral geometry using the method described in
subsection 5.5. We then used the Blend Shapes model as suggested in [24] to add
different expressions to the facial geometry. We changed the pose and lighting
and rendered 2D images to obtain numerous examples of the same identity. The
resulting images are shown in the supplementary material in figures 1-3.

The sliced Wasserstein distance (SWD) is an efficiently computable random-
ized approximation to earth-movers distance which can be used to measure sta-
tistical similarities between images [25]. A small SWD indicates that the distri-
bution of the patches is similar in both appearance and variation. The authors
in [18] used SWD to measure the distance between the training distribution
and the generated distribution of their GAN in different scales, and compared
them to results produced by various competing methods. More specifically, the
SWD between the distributions of patches extracted from the lowest resolution
images is indicative of similarity in large-scale image structures, while the high
resolution patches encode information about pixel-level attributes. Inspired by
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this notion, we used the SWD to measure distances between distributions of our
training and generated images in different scales. The results of this experiment
are shown in Table 1. The table demonstrates that the textures generated by our
model are statistically closer to the real data than those generated by 3DMM.

Resolution 1024 512 256 128 64 32 16 avg

Real 3.53 2.98 3.75 2.6 2.75 2.5 1.63 2.82
Proposed 20.62 10.02 8.52 7.58 7.75 9.89 21.77 12.31
PCA 326 137 42 19.3 11.74 22.86 72.51 90.52

Table 1: Sliced Wasserstein distance (SWD) [25] measured over extracted patches
from the real and generated textures. The columns show SWD for patches ex-
tracted at different image resolutions, and the final column shows the average
SWD over all resolutions.

In order to visualize and compare between the distributions of the real and
generated data, we used a popular dimensionality reduction process termed T-
SNE [26]. We generated textures and geometries according to our model, as
well as according to the 3DMM. For 3DMM, we used 200 eigenvectors for both
texture and geometry. We then rendered the real and generated faces and fed
them into a pre-trained facial recognition network based on [27], which provided
an identity descriptor for each rendered face. We used T-SNE to visualize the
distribution of obtained identity vectors. We labeled the real data according to
race and gender, and found very uniform clusters. We assigned each one of our
the faces generated by our proposed model to the closest cluster’s center and
produced one random example from each cluster. The results of this process
are depicted in Figure 6. The embedding clearly shows that the distribution of

Fig. 6: From left to right: T-SNE [26] embedding of real identities versus GAN
synthetic identities, T-SNE embedding of real identities versus 3DMM identi-
ties, clusters of real data according to race and gender, and synthetic samples
conforming to each cluster.

identities produced by the proposed pipeline is well matched to the distribution
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of the real identities included in the training data, and that the pipeline is able
to produce data samples from each cluster (race and gender) reliably. On the
other hand, the distribution produced by 3DMM, generated by the same training
data, is a uniform Gaussian which has no natural clustering.

In the following experiment, we set out to demonstrate that our model is
capable of generating novel identities and not just add small variations to the
existing training data. To that end, we made use of the identity descriptors ex-
tracted previously. We measured the L2 distance between each generated iden-
tity and its closest real identity from the training data, and plotted the ordered
distances. We repeated the process within the training data, namely, for each
training identity, we measured the L2 distance to its nearest neighbor within the
training set (excluding itself). Figure 7a compares the resulting distances on a
normalized axis. It can be seen that the distributions of distances are similar, and
that the generated faces are not bounded to small variations in the vicinity of
the training samples, in terms of identity. In other words, the variation between
generated samples and the existing data is at least as large as the variation of
the data itself.

In order to test the ability of our model to generalize to a previously unseen
test set of real faces, we held out roughly 5% of the identities during training for
evaluation. We measured the L2 distance between each real test set identity to
the closest identity generated by the GAN, as well as to the closest real training
set identity. Figure 7b compares the resulting ordered distances on a normalized
axis. It can be seen that the test set identities are closer to the generated identi-
ties than those of the training set. Moreover, the ”Test to fake” distances are not
significantly larger than the ”Fake to real” distances in Figure 7a. This implies
that our model is capable of generating samples that diverge significantly from
the original training set and may resemble previously unseen data.

Finally, we performed a qualitative evaluation of the ability of our pipeline
to generate original data samples. In Figure 8 we show five textures generated
by our proposed model, alongside the closest neighbor within the real data in
sense of L2 norm between identity descriptors. This experiment indicates that
the nearest real textures are far enough to be visually distinguished as different
people, showing that our model is able to produce novel identities.

Extended results and illustrations are supplied within the supplementary
material.

7 Discussion and Conclusions

In this paper we present a new approach for synthesis of realistic 3D human faces.
The proposed model, in contrast to 3DMM [5] is not limited to linear operations,
and is able to exhibit more complex relations between the coefficients and the
generated samples. In section 2 we show the limitations of the 3DMM model in
lack of complexity, realism and ability to correctly sample the true distribution.
Namely, its simplified model follows a distribution that could generate non plau-
sible samples. Although 3DMM might be capable of approximating real samples
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(a) (b)

Fig. 7: Distance between generated and real identities, measured as L2 distance be-
tween identity descriptors. For all plots, the X axis is normalized and ordered by the
distances.
(a) Fake to real: for each generated identity, its distance to the nearest real training
identity. (a) Real to real: for each real training identity, its distance to the nearest
real training identity, excluding itself. (b) Test to fake: for each real test identity,
its distance to the nearest generated identity. (b) Test to train: for each real test
identity, its distance to the nearest real training identity.

Fig. 8: Top: Synthesized facial textures. Bottom: corresponding closest real neigh-
bors in terms of facial identity.
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effectively, generating new plausible samples requires the model to conform with
the correct data distribution prior.

We base our model on the notion of bringing the dataset into a uniform
parametrization space, which allows for easier processing of geometry as images.
This step allows to introduce the powerful tools of image processing into our
geometric problem such as NN and more specifically, GANs. We use the GAN
model in order to closely resemble the distribution of faces in our dataset, which
allows to generate new samples that are both plausible and realistic.

The formation of geometries is performed per texture by learning the re-
lation between texture and geometry coefficients of the 3DMM from the real
data, following the observation that reducing the resolution of the geometry has
negligible effect on the final appearance of the face. In section 5, we explored
several methods for this purpose. In our experiments we used the LS method due
to its low distortion and simplicity. The resulting geometries take into account
expression, gender and race that appear in the texture, making the final result
more realistic.

In section 6 we preform several qualitative and quantitative evaluations in
order to strengthen our claims. Figure 6 depicts an embedding of real versus
generated faces ID’s, which demonstrates the ability of our proposed model to
span the distribution of identities presented in the real data. It is important to
note that the identities cover the same areas while filling the gaps between the
real data samples. We also show that the 3DMM model sample distribution un-
surprisingly resembles a Gaussian distribution which diverges from the training
data distribution, although it was constructed based on this data.

Further experimentation depicted in Figure 7 shows results of nearest neigh-
bor searches between generated and real samples. It is important to note that
Figure 7b depicts the relation between real and generated samples to test set
samples which were held out during training. We were able to show that the
distances of real samples to the test set tend to be higher than distances from
the generated samples to the same test set. This demonstrates that generated
samples do not just produce IDs that are very close to the training set, but also
novel IDs that resemble previously unseen examples.

We believe that this general framework for modeling geometry and texture
can be useful for many applications. One prominent example is to use our pro-
posed model in order synthesize more realistic facial data which can be used
to train face detection, face recognition or face reconstruction models. We also
believe that our model can be valuable in cases where many different realistic
faces need to be created, such as in film industry or computer games. Note that
this does not require to generalize the training samples but only to to produce
various different plausible facial samples. This general methodology can also be
employed for different various classes of objects where alignment of the data is
possible.



16 Ron Slossberg*, Gil Shamai*, and Ron Kimmel

Acknowledgements

This research was partially supported by the Israel Ministry of Science, grant
number 3-14719 and the Technion Hiroshi Fujiwara Cyber Security Research
Center and the Israel Cyber Bureau. We would like to thank Intel Inc for con-
tributing the facial scans used during this research.



Facial geometry synthesis by GAN 17

References

1. Masi, I., Trn, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need to
collect millions of faces for effective face recognition? In: European Conference on
Computer Vision, Springer (2016) 579–596

2. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learn-
ing from simulated and unsupervised images through adversarial training. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol-
ume 3. (2017) 6

3. Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face recon-
struction from a single image. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE (2017) 5553–5562

4. Gecer, B., Bhattarai, B., Kittler, J., Kim, T.K.: Semi-supervised adversarial learn-
ing to generate photorealistic face images of new identities from 3d morphable
model. arXiv preprint arXiv:1804.03675 (2018)

5. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Pro-
ceedings of the 26th annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co. (1999) 187–194

6. Saito, S., Wei, L., Hu, L., Nagano, K., Li, H.: Photorealistic facial texture inference
using deep neural networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. Volume 3. (2017)

7. Richardson, E., Sela, M., Kimmel, R.: 3d face reconstruction by learning from
synthetic data. In: 3D Vision (3DV), 2016 Fourth International Conference on,
IEEE (2016) 460–469

8. Sela, M., Richardson, E., Kimmel, R.: Unrestricted facial geometry reconstruc-
tion using image-to-image translation. In: 2017 IEEE International Conference on
Computer Vision (ICCV), IEEE (2017) 1585–1594

9. Jolliffe, I.T.: Principal component analysis and factor analysis. In: Principal com-
ponent analysis. Springer (1986) 115–128

10. Booth, J., Roussos, A., Ponniah, A., Dunaway, D., Zafeiriou, S.: Large scale 3d
morphable models. International Journal of Computer Vision 126(2-4) (2018)
233–254

11. Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., Dunaway, D.: A 3d morphable
model learnt from 10,000 faces. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. (2016) 5543–5552

12. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and
Vision Computing 28(5) (2010) 807–813

13. Alabort-i-Medina, J., Antonakos, E., Booth, J., Snape, P., Zafeiriou, S.: Menpo:
A comprehensive platform for parametric image alignment and visual deformable
models. In: Proceedings of the ACM International Conference on Multimedia. MM
’14, New York, NY, USA, ACM (2014) 679–682

14. King, D.E.: Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research 10 (2009) 1755–1758

15. Blender Online Community: Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam. (2017) http://www.blender.
org.

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. (2014) 2672–2680

http://www.blender.org
http://www.blender.org


18 Ron Slossberg*, Gil Shamai*, and Ron Kimmel

17. Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499 (2016)

18. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. nternational Conference on Learning Rep-
resentations (ICLR) (2017)

19. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. arXiv preprint (2017)

20. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

21. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Advances in Neural Information Processing Sys-
tems. (2017) 5769–5779

22. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint
arXiv:1701.07875 (2017)

23. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares gener-
ative adversarial networks. In: 2017 IEEE International Conference on Computer
Vision (ICCV), IEEE (2017) 2813–2821

24. Chu, B., Romdhani, S., Chen, L.: 3d-aided face recognition robust to expression
and pose variations. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2014) 1899–1906
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