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Figure 1: Shapes (left) from the TOSCA database [BBK08] and their corresponding canonical forms (right) obtained by the
proposed Nyström Multidimensional Scaling.

Abstract
The analysis of 3D nonrigid objects usually involves the need to deal with a large number of degrees of freedom.
When trying to match two such objects, one approach is to map the surfaces into a domain in which the matching
process is simple to execute. Limiting the discussion to almost isometric mappings, which describe most natural
deformations in nature, one could resort to Canonical forms. Such forms translate the surface’s intrinsic geometry
into an extrinsic one in a Euclidean space, thus eliminating the effect of deformations at the expense of (hopefully)
minor embedding errors. Multidimensional Scaling (MDS) is a dimensionality reduction technique that can be
used to compute canonical forms of 3D-objects, by first evaluating the pairwise geodesic distances between sur-
face points, and then embedding the distances in a lower dimensional Euclidean space. The native computational
and space complexities involved in describing such inter-geodesic distances is quadratic in the number of sur-
face points, a property that could be prohibiting in various scenarios. We present an acceleration framework for
multidimensional scaling, by accurately approximating the pairwise distance maps. We show how the proposed
Nyström Multidimensional Scaling (NMDS) framework can be used to compute canonical forms in quasi-linear
time and linear space complexities in the number of data points. It allows us to efficiently deal with high resolution
structures without giving up the embedding accuracy.

1. Introduction

With the growth in the amount of digital information be-
ing stored and analyzed appears the need for simplifica-
tion and dimensionality reduction. Methods, such as prin-
cipal component analysis (PCA) [Wil01], self-organizing
map (SOM) [Koh98], and multidimensional scaling (MDS)
[BG05], are data reduction techniques that occupy the minds
of researchers, who constantly try to reduce their computa-
tional and space complexities.

Multidimensional scaling (MDS) is one such dimension-
ality reduction technique, which attempts to map data into a
low dimensional space. The data is being embedded while
preserving, as much as possible, some affinity measure be-
tween each pair of data points. Such dimensionality reduc-
tion techniques were used, for example, to flatten numerical
models of monkeys’ cortical surfaces [SSW89] [DVEA∗96],
for texture mapping [ZKK02] [GKK02], and for image and
video analysis [Sch01] [RT00] [AK06] [Ple03].

In [EK03], MDS was used to embed surface points of 3D
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non-rigid shapes into R3, such that the shortest geodesic dis-
tance between each pair of points is close, as much as pos-
sible, to the Euclidean distance between corresponding em-
bedded points. It is shown that the embedded set of points,
known as a Canonical form, is invariant to isometric defor-
mations of the 3D shapes. See Figure 1 for example. Canon-
ical forms could thereby be used for non-rigid object recog-
nition, classification, and shape matching. This task requires
the computation of all pairwise geodesic distances, which
can be time and space consuming and impractical when deal-
ing with more than a few thousands of points. Efficient pro-
cedures such as the fast marching method [KS98], can com-
pute the distance map between all pairs of points, in time
complexity of O(p2 log p), where p is the number of data
points.

Here, we show how the computation of canonical forms
can be accelerated, by projecting the geodesic distances onto
a low dimensional subspace, which is learned from a small
set of examples. This also allows to avoid storing the full
pairwise distances matrix. Other attempts to accelerate MDS
were made in [BBKY06], using multi-gird. When giving up
the non-local structure of the data manifold and consider-
ing only relations between nearby points, the space com-
plexity is O(p), see for example the Local Linear Embed-
ding (LLE [RS00]) and Hessian Local Linear Embedding
(HLLE [DG03]). In [WSBA07], dense point to point corre-
spondence between two surfaces was found by first perform-
ing MDS on a group of landmark points, then by computing
a rigid correspondence between the canonical forms, and fi-
nally by projecting the rest of the points to the embedding
space. MDS is performed using SMACOF algorithm, which
is iterative. The idea of first embedding a group of land-
marks and then projecting the rest of the points was already
proposed in Landmark-Isomap [ST02], and is performed in
a simple closed form. Dealing with classical multidimen-
sional scaling in the spectral domain was suggested in Spec-
tral MDS (SMDS) [AK13]. It allows substantial reduction
in complexity using the fact that the full inter-geodesics dis-
tances matrix can be reliably approximated from just a small
subset of its rows (and columns). In fact, the flat embed-
ding itself can be considerably accelerated by operating in
the data laplacian eigen-space.

The Nyström method [WS01] [Pla05] is an efficient tech-
nique that can be used to construct low rank approxima-
tions of symmetric matrices, using only a few columns cho-
sen randomly from the matrix. [AW10] reviews the Nyström
method and proposes theoretical guarantees for random sam-
pling. In [YZZY12], Nyström method was used for approx-
imating the affinity matrix and to perform MDS. Instead of
a random sampling, an incremental sampling scheme was
proposed for choosing the columns one by one, such that
the variance of the affinity matrix is minimized. [CMIBR07]
used Nyström method for graph drawing, and proposed a
different sampling scheme based on the farthest point strat-
egy, which we find to be more efficient and provided better

approximation results. A regularization term is then used for
the pseudo-inverse computation, which further improves the
approximation. The graph shortest path distances are being
measured using BFS, which assumes all edges are with equal
length. [LJZ06] combined Kernel-PCA [SSM98] with Nys-
tröm method and showed how it can be efficiently used for
mesh segmentation and for finding mesh correspondence.

Here, inspired by Spectral-MDS and Nyström, we de-
velop a low rank matrix approximation using a learning ap-
proach. Then, with a small modification, we derive a vari-
ant of Nyström approximation with a low-rank regulariza-
tion term. In practice, we still find the regularization used
in [CMIBR07] to obtain slightly better results, though it
is slower to compute. We use the farthest point sampling
strategy, and the fast marching method for measuring the
geodesic distances when embedding the surfaces, which is
more adequate for surfaces with arbitrary connectivity, than
BFS.

The structure of the paper is as follows. In Section 2 we re-
view the Classical multidimensional scaling method for em-
bedding a surface into a Euclidean space, using the pairwise
geodesic distances. Next, in Section 3 we present the Nys-
tröm method. We develop an alternative learning approach
for approximating a matrix, and show how it can be used to
accelerate MDS. Finally, in Section 4 we support the pro-
posed method with experimental results, that are followed
by conclusions.

2. Review of Classical Scaling

Classical scaling is a dimensionality reduction procedure
which attempts to map a given data into a low dimensional
Euclidean space, while preserving, as much as possible,
some affinity measure between each pair of data points. Let
V = {v1,v2, ...,vp} be a set of p vertices, and D a p× p affin-
ity matrix such that Di j is some affinity measure between
vi,v j. Classical scaling aims at finding an embedding of the
data in a low dimensional Euclidean space: Given k, find a
set of points {xi}p

i=1 in Rk, such that the Euclidean distance
between xi and x j is close as possible to Di j.

‖xi− x j‖2
2 ≈ D2

i j, ∀i, j. (1)

This equation can be written in matrix formulation as

JXXT J ≈−1
2

JEJ, (2)

see [BG05] for more details. Here, Xp×k is a matrix hold-
ing the points {xi}p

i=1 in its rows, the matrix Ep×p is the
element-wise square of D, i.e., Ei j = D2

i j, and Ji j = δi j− 1
n

is a symmetric matrix, where as usual δi j = 0 for i 6= j and
δii = 1 for all i. J is a centring matrix: Z = JX is a translation
of X to the origin, such that the mean of every column of Z is
zero. Thus, computing Z instead of X , yields the same solu-
tion up to translation. Classical scaling formulates this prob-
lem through the minimization argZ min

∥∥∥ZZT + 1
2 JEJ

∥∥∥
F

.
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The solution for this problem is achieved by decomposing
the symmetric matrix− 1

2 JEJ into its eigenvalues and eigen-
vectors matrices UDV T . Then, by considering the k largest
eigenvalues and corresponding eigenvectors in the truncated
matrices Ũ and D̃, the solution is given by Z = ŨD̃

1
2 . The

traditional classical scaling algorithm requires the computa-
tion of the full Ep×p matrix which is challenging to handle
when dealing with more than several thousands of points.
In the next sections we develop a matrix decomposition
method which is efficient for matrices which are obtained
through computation of geodesic distances. Later, we show
how to use this method to efficiently solve the classical scal-
ing problem and variants of it in quasi-linear time and linear
space complexities.

3. Nyström Multidimensional Scaling

3.1. Nyström method for low-rank matrix
approximation

In this section we derive a variant of the Nyström method for
efficiently approximating the matrix E. Let E be a symmetric
p× p matrix. The Nyström method is defined as follows:
Randomly choose a set of n columns from E and let Rp×n
contain these columns. Let Sn×n be the intersection of R and
RT in E. Figure 2a demonstrates the partition of E, where we
assume without loss of generality that the chosen columns
and corresponding rows are the first ones.

(a) (b)

Figure 2: Partition of E

The Nyström approximation of the matrix E is then given
by Ê =RS+RT , where S+ is the pseudo-inverse of the matrix
S. When the rank of E is n or less, and when S is a full
rank matrix, it can be shown that this decomposition is the
exact reconstruction of E. When this is not the case, but E
can be approximated by a low rank matrix, we expect this
decomposition to approximate E.

It is known that the pseudo-inverse of a matrix S can
be obtained using its singular value decomposition. Denote
by S = WΣUT the thin singular value decomposition of S,
i.e., the singular values equal to zero and corresponding sin-
gular vectors are removed. Then, the pseudo-inverse of S
can be defined by S+ = UΣ

−1W T . When S is symmetric,
the pseudo-inverse can be defined using the eigenvalue de-
composition S+ = V Λ

−1V T , where S = V ΛV T is the thin

eigenvalue decomposition of S. Nyström method is origi-
nally aimed to approximate strictly positive definite matri-
ces. In our formulation, we justify the use of it for general
symmetric matrices from a learning point of view.

3.1.1. Adding a regularization term

The smallest eigenvalues of S can cause instability in the
computation of the pseudo-inverse, and a regularization is
required. [MM84] proposed to use a regularized pseudo-
inverse (RPI), which uses the expression

σi

σ2
i +α/σ2

i
, (3)

for the reciprocals in Σ
−1. Here, α is a parameter and σi

are the singular values of S. In this manner, smaller singu-
lar values are increased by larger terms and hence their in-
verse is less sensitive to noise. α should be small enough
to have a negligible effect on the large singular values,
but large enough to affect the smaller ones. The authors
in [CMIBR07] used this kind of regularization for the Nys-
tröm interpolation. They performed experiments and recom-
mended choosing α = σ

3
1, where σ1 is the largest singular

value. We propose a different regularization, which reduces
the rank of S, hence also accelerates the computations. De-
note by Ṽ and Λ̃ the matrices which contain the n1 < n
largest eigenvalues and corresponding eigenvectors of S. The
alternative pseudo-inverse is then given by

S+ = Ṽ Λ̃
−1Ṽ T . (4)

In this manner, the smallest n− n1 eigenvalues are ignored
and stability is obtained. Nevertheless, it is clear that n1
should not be too small, so that we still keep enough eigen-
vectors that capture the structure of S. Figures 5a, 5b show
the approximation error using both regularization terms,
with respect to n1 (CUR) and α (RPI).

3.1.2. A learning based approximation

In this section, we formulate the matrix approximation as a
minimization problem and show how we derive the Nyström
method with our proposed regularization discussed above,
which is a low rank version of S+. This formulation also ex-
plains the need for regularization from an over-fitting point
of view.

Let E be a symmetric p× p matrix. Choose n columns of
E and let R hold these columns. Define the matrix S as shown
before in Figure 2a. Assuming the set of columns capture
most of the information of E, a projection of E onto the sub-
space spanned by the columns could be used as a good low
rank approximation for E, similar to projecting the data on
the main principal components (PCA). The projection of E
on the span of the columns of R is obtained by

Ê = RR+E. (5)

In order to compute this projection, we would have to know

c© The Eurographics Association 2015.



G. Shamai, M. Zibulevsky, R. Kimmel / Nyström MDS

the entire matrix E. Since we only know a small subset of
E (R and RT ), we suggest a different approach, in which
we learn the projection using our available data. Since the
projection is in the range of R, it can be defined through a
coefficients matrix M as

Ê = RM. (6)

M is a n× p matrix, and we now attempt to find the entries of
the matrix M. We propose the following learning approach:
Choose n1 < n columns from R and let C hold these columns.
Define C1 as the intersection of C and RT in E, as shown in
Figure 2b, where without loss of generality we chose the
first columns of R for C. C1 is a n× n1 matrix. Now, solve
the minimization problem

argM min‖C1M−RT ‖2
F , (7)

where now M is a n1× p matrix. This can be seen as using
the known columns of E to learn M. This is a simple least
squares problem. Its solution is given by

M = (CT
1 C1)

−1CT
1 RT =URT , (8)

and our decomposition is formulated as

Ê =CURT , (9)

where U = (CT
1 C1)

−1CT
1 . In this manner we have obtained

what is known as a CUR decomposition of the matrix E.
These kind of decompositions are widely used and studied,
see [DKM06], [MD09] for example. Notice that we restrict
the coefficient matrix Mn1×p to be smaller than originally
defined in Equation (6). This helps us to avoid over-fitting
of the model, as can be seen in Figure 5a (CUR), which
measures the error ‖CM−E‖F on the whole data, with re-
spect to n1. If we choose n1 to be too small, we will not
have enough columns in C to capture the subspace spanned
by these columns of E. If we choose n1 to be too large, we
could over-fit the matrix R and the approximation error of
the rest of the matrix will be large.

Let us introduce a small modification in the above pro-
cedure. Denote by Ṽ and Λ̃ the matrices which contain the
n1 (n1 < n) largest eigenvalues and corresponding eigenvec-
tors of S. Now, instead of forming C from n1 columns of R,
we define C = RṼ . The columns of C are now linear com-
binations of the columns of R, instead of a subset of the R.
The same minimization is then solved again, and in Figure
5a (Low-Rank) we see an improvement which is due to the
better choice of C.

Ê =CURT =C(CT
1 C1)

−1CT
1 RT (10)

Notice that C1 = SṼ = V ΛV T Ṽ . Placing C = RṼ and C1 =
V ΛV T Ṽ in the above equation, we obtain

Ê = RṼ (Ṽ TV ΛV TV ΛV T Ṽ )−1Ṽ TV ΛV T RT , (11)

which can be reduced to

Ê = RṼ Λ̃Ṽ T RT = RT RT . (12)

This derivation can be thought of as a variant of the Nys-
tröm method where T = Ṽ Λ̃Ṽ T is used instead of S+. T
is a low rank matrix with rank n1 and is nothing but the
truncated eigenvalue decomposition of S+ we proposed in
Equation (4). In this manner we have derived the regular-
ization term defined above, which can be seen as restricting
the number of learned parameters to reduce over-fitting in a
learning model.

3.2. Columns selection

The matrix decomposition developed in the previous section
can be seen as a projection of E on the subspace spanned
by the chosen columns. Hence, a good choice of columns
would be one that capture the range of E to high accuracy
with negligible failure probability. In this section, we sug-
gest an iterative sampling strategy for choosing the columns,
instead of choosing them randomly. The suggested strategy,
known as the farthest point sampling strategy, is a method
for selecting points that are far away from each other. the
first point is selected at random. Then, at each iteration, the
farthest point from the already selected ones is selected. It
is known to be 2-optimal in sense of covering [HS85], and
its complexity is O(np log p) when using fast marching for
the distance computation on triangle meshes. The method is
described in Procedure 1, for triangle meshes.

Procedure 1 Farthest point sampling

Input A triangle mesh with a set of p vertices V =
{v1,v2, ...,vp} and desired number of chosen vertices n.

Output a sampling S = {r1, ...,rn} and distances from the
samples to the rest of the vertices Fp×n

1: choose an initial vertex at random, r1 ← vertex index,
S ← S ∪{r1}

2: compute the geodesic distances from vr1 to all vertices,
F(:,1)← dist(vr1)

3: for i = 2 to n do
4: find the farthest vertex from the already chosen ones,

ri = argmax1≤ j≤|V |min1≤k<i Fjk
5: update the set of selected samples, S ← S ∪{ri}
6: compute the geodesic distances from vri to all ver-

tices, F(:,i)← dist(vri)
7: end for

Here, dist(v) returns a vector of geodesic distances from
vertex v to the rest of the vertices, using the fast marching
methods. This procedure is being used as an efficient way
of obtaining a few columns of the matrix E. Since the cho-
sen samples are far, these columns are expected to capture
most of the information of the matrix. While other existing
methods need to store the whole matrix in memory or at least
make a few passes on it to decide which columns are best to
choose, here we do not need to know the entire matrix in ad-
vance. This is a strong advantage which could be exploited
in problems related to pairwise geodesic computation.
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3.3. Accelerating classical scaling

We present an efficient alternative for the classical scal-
ing algorithm using the matrix approximation discussed
above. Denote as before the approximation of E by: Ê =
RṼ Λ̃

−1Ṽ T RT , where Ṽ is a p×n1 matrix and Λ̃ is a n1×n1
diagonal matrix. A straightforward solution would be similar
to classical scaling. Namely, compute Â = − 1

2 JÊJ, decom-
pose it into UDUT , and then form the truncated decomposi-
tion ŨD̃ŨT , where D̃ and Ũ hold the k largest eigenvalues
and k corresponding eigenvectors. The solution is then given
by Z = ŨD̃

1
2 . Since we would like to avoid computing and

storing large matrices, the above straightforward procedure
would fail to serve this purpose. For that goal, we propose
the following efficient remedy. compute the QR factoriza-
tion QW = JRṼ , where Q is an orthonormal p× n1 matrix,
and W is an upper triangular n1×n1 matrix. Note that

Â =−1
2

QW Λ̃
−1W T QT . (13)

Compute the k largest eigenvalues and eigenvectors of the
symmetric matrix − 1

2W Λ̃
−1W T , using eigenvalue decom-

position:

Ṽ2Λ̃2Ṽ T
2 =−1

2
W Λ̃
−1W T . (14)

Ṽ2 is a n1× k matrix containing the k eigenvectors that cor-
respond to the k largest eigenvalues as its columns, and Λ̃2
is a k× k matrix containing the k largest eigenvalues along
its diagonal. We obtained the decomposition

Â = QṼ2Λ̃2Ṽ T
2 QT . (15)

It is clear that this is an eigenvalue decomposition of Â since
QṼ2 is orthonormal as a product of orhonormal matrices,
and Λ̃2 is diagonal. Therefore, we managed to obtain the
eigenvalue decomposition without explicitly computing Â.
Finally, the solution of the classical scaling problem is given
by

Z = QṼ2Λ̃
1
2
2 . (16)

We sum up the final MDS acceleration in Procedure 2.

4. Results

Throughout this section, we compare between the Classi-
cal Scaling Method (MDS), Spectral MDS [AK13] (SMDS),
and our proposed Nyström-MDS (NMDS) for embedding
the affinity matrix of 3D shapes. We compare two meth-
ods for the geodesic distance computations, BFS used in
[CMIBR07] and fast marching on triangulated domains
[KS98] used here. We compare min-variance incremental
sampling (Min-Var) used in [YZZY12] to the farthest point
sampling strategy used here, for choosing the columns. We
compare the regularization term used in [MM84](RPI) to
the regularization term derived from our minimization prob-
lem. In addition, we compare our algorithm to Landmark-
Isomap proposed by [ST02], and to the algorithm proposed

Procedure 2 Nyström-MDS

Input G = {E,V} with p = |V | vertices, parameters n,n1.
Output A matrix Z which contains the coordinates of the

embedding.
1: Choose n samples of the data using farthest point sam-

pling and obtain the matrix F .
2: Compute R, the element-wise square of F , Ri j = F2

i j .
3: Denote by S the intersection of R and RT in E.
4: Compute Ṽ and Λ̃, which contain the n1 largest eigen-

values and corresponding eigenvectors of S, using eigen-
value decomposition

5: Compute QW = JRṼ using QR factorization
6: Compute Ṽ2 and Λ̃2, which contain the k largest

eigenvalues and corresponding eigenvectors of
− 1

2W Λ̃
−1W T , using eigenvalue decomposition.

7: Return the coordinates matrix Z = QṼ2Λ̃
1
2
2

by [LJZ06], which uses the Nyström method to efficiently
perform Kernel PCA with gaussian radial basis function.
When using SMDS, we use 300 eigenvectors.

Consider a non-rigid two dimensional surface in R3, de-
scribed by a discrete connected triangle mesh with vertices.
Let D be the affinity matrix which contains the pairwise
geodesic distances between each two vertices on the sur-
face. MDS can be used to embed D into a flat Euclidean
space. This kind of embedding is known as a canonical form
[EK03], and is invariant to isometric deformations of the sur-
face. This idea can be exploited, for instance, for non-rigid
objects recognition, eliminating the degree of freedom of
isometric deformations. In the first example, we compute the
canonical forms of two surfaces from the TOSCA database
[BBK08], each defined by p = 3400 vertices. We apply
the proposed procedure with n1 = 50, choosing n = 100
columns using the farthest point sampling procedure, and
using the fast marching method for the geodesic distances
computation.

Figure 3 compares between canonical forms derived from
MDS, NMDS, SMDS, NMDS using Min-Var instead of far-
thest point sampling, and NMDS using BFS instead of fast
marching. As can be seen, the proposed NMDS provides
similar canonical forms to the full MDS, with only n = 10
columns sampled from E. Since the mesh representing the
shapes contains edges with varying lengths, BFS fails to
measure the distances accurately. The corresponding embed-
ding error is displayed under each canonical form.

Multidimensional Scaling can be used to visualize the in-
ner structure of data, particularly when the data is a distance
matrix. In the following example, we use MDS to visual-
ize the classification of the canonical forms of 30 nonrigid
shapes. We took 9 Cat shapes, 6 Centaur shapes and 15
David shapes and computed each of their canonical forms
using NMDS and KPCA. We computed the Euclidean dis-
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MDS NMDS SMDS Min-Var BFS

Stress 394.41 398.1 640.6 4684.2 934.8

Stress 261.1 296 937.8 906.7 1184.4

Figure 3: Canonical forms of David and Cat, using only n = 10 (n1 = 5) samples for the compared methods. Left to right: The
original shape followed by canonical forms obtained by classical MDS, the proposed NMDS, SMDS, NMDS with Min-Var,
and NMDS with BFS. The stress error 1

p2

∥∥∥ZZT + 1
2 JEJ

∥∥∥
F

of the embedding is displayed at the bottom of the corresponding
form.

tances between each pair of the 30 canonical forms, and ob-
tained a 30×30 pairwise Euclidean distance matrix. Finally,
we embedded the distance matrix into R2 using MDS. Fig-
ure 4 shows the classification results. As can be seen, Canon-
ical forms computed by NMDS allows us to classify the non-
rigid objects. While Kernel-PCA is an efficient method that
can be used to compute canonical forms, the gaussian fil-
ter used in [LJZ06] mainly considers local distances. Hence,
the canonical forms are less distinctive, as can be seen in the
classification.

Figure 4: Classification of 30 shapes of Cat, David and Cen-
taur, obtained by MDS on their Canonical forms, which
were obtained by NMDS (left) and by KPCA with Nyström
(right).

In figures 5a, 5b, 6 we measure the reconstruction error
of the squared affinity matrix E, of the David shape, defined
through the Frobenius norm 1

p2 ‖Ê −E‖2
F . In Figure 5a we

plot the error of the CUR decomposition defined in Equation
(9), and its modification defined in Equation (12) which we
show to be equivalent to Nyström using (4) for the pseudo-
inverse. In this plot, we fix the number of chosen columns n
to 100 and change the value of n1. In Figure 5b we plot the
same error using the regularization defined in Equation (3)

with respect to α, again fixing n = 100. A slightly better re-
sult is achieved for this regularization for the optimal α. No-
tice that the reconstruction error of Nyström reconstruction
without a regularization term, as being used in [YZZY12], is
obtained by choosing n1 = 100 in Figure 5a or α = 0 in Fig-
ure 5b. As can be seen, the regularization term significantly
reduces the error.

(a) The error with respect to
n1, using the learning approach
(CUR) and its modification
which is equivalent to Nyström
with the low rank regulariza-
tion term (Low-Rank)

(b) The error with respect to
α, using RPI regularization. We
marked the choice of α ac-
cording to the suggestion in
[CMIBR07].

Figure 5: The affinity matrix reconstruction error

In Figure 6, we plot the above error as a function of the
number of samples n, setting n1 =

⌈
1
2 n
⌉

for NMDS. We
again compare the results to the same procedure using BFS
and Min-Var incremental sampling. Here, we refer the best
rank n approximation of E as the ground truth, which is ob-
tained by the solution of argM min‖RM−E‖F , (the solution
is given in Equation (5)).

In Figure 7, we measure the error of the final embedding,
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Figure 6: The affinity matrix reconstruction error with re-
spect to the number of samples n, using different approaches.

computed by stress(Z)− stress(Z∗), where

stress(Z) =
1
p2 ‖ZZT +

1
2

JEJ‖F (17)

and Z∗ is the embedding obtained by full MDS. We add
the embedding error obtained by Landmark-Isomap (IS-
ISOMAP). In this method, a group of landmarks is first se-
lected and embedded using classical MDS. Then, the rest
of the points are projected onto the subspace spanned by
the embedded landmarks. This method is effective but lim-
ited, since the embedding subspace is determined only by
the landmark points.

Figure 7: The final embedding error with respect to the num-
ber of samples n, after subtracting the optimal stress error
obtained by Classic MDS, as defined in Equation (17).

In Figure 8, we measure the computation times of SMDS,
NMDS with the low-rank regularization, no regularization
term, and the RPI regularization term, on a shape with 3400
vertices. Here, we do not include the computation times
needed for acquiring the geodesic distances. We plot the time
in seconds, as a function of n, when choosing n1 =

⌈
1
2 n
⌉

in

NMDS. The difference computation times for the different
regularization terms stems from Step 5 in Procedure 2.

Figure 8: Computation times of NMDS with the low-
rank regularization (NMDS), NMDS with no regularization
term (NO-REG), and NMDS with the RPI regularization
term(RPI), on a shape with 3400 vertices, not including the
geodesic distances computation.

Finally, we run the whole procedure with n = 10 samples
and compare the computation time to SMDS and MDS, on
two shapes with 3400 and 28000 vertices. The algorithms
were evaluated on an i5 Intel computer with 4GB RAM.
The following table compares between the average time it
took each of the methods to compute the result, including
the computation of the geodesic distances. As for MDS, it
is impossible to apply it to 28000 vertices due to memory
limitations. With more memory the computation time would
have taken more than a couple of hours.

# vertices MDS NMDS SMDS
3400 25.6 0.24 12.5
28000 NaN 1.67 75.4

Figure 9: Computation times (in seconds) for MDS, NMDS,
and SMDS on shapes with 3400 and 28000 vertices.

5. Conclusions

We formulate a minimization problem based on a learning
approach for finding a low-rank approximation of the affinity
matrix used in MDS. We show its connection to the Nyström
method, and explain the need for a regularization term from
an over-fitting point of view. We exploit the inner dependen-
cies of the pairwise geodesic distances and use the farthest
point sampling strategy to choose representative columns,
without knowing the entire matrix. The chosen columns are
far from each other, and hence are expected to capture most
of the action of the matrix. We use the fast marching method
for an accurate computation of the geodesic distances and
show that it leads to better results than with using BFS.

c© The Eurographics Association 2015.
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Finally, we pack the whole algorithm in a simple and fast
procedure for Multidimensional Scaling approximation, and
show how it can be used to obtain the canonical forms of 3D
shapes.
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