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Efficient Inter-Geodesic Distance Computation
and Fast Classical Scaling

Gil Shamai, Michael Zibulevsky, and Ron Kimmel

Abstract—Multidimensional scaling (MDS) is a dimensionality reduction tool used for information analysis, data visualization and
manifold learning. Most MDS procedures embed data points in low-dimensional Euclidean (flat) domains, such that distances between
the points are as close as possible to given inter-point dissimilarities. We present an efficient solver for classical scaling, a specific
MDS model, by extrapolating the information provided by distances measured from a subset of the points to the remainder. The
computational and space complexities of the new MDS methods are thereby reduced from quadratic to quasi-linear in the number of
data points. Incorporating both local and global information about the data allows us to construct a low-rank approximation of the
inter-geodesic distances between the data points. As a by-product, the proposed method allows for efficient computation of geodesic

distances.

1 INTRODUCTION

‘ x J ITH the increasing availability of digital information, the

need for data simplification and dimensionality reduction
tools constantly grows. Self-Organizing Map (SOM) [19], Local
Coordinate Coding [42]], |43, Multidimensional Scaling (MDS),
and Isomap (5], [39] are examples of data reduction techniques
that are used to simplify data and hence reduce computational and
space complexities of related procedures.

MDS embeds the data into a low-dimensional Euclidean (flat
embedding) space, while attempting to preserve the distance
between each pair of points. Flat embedding is a fundamental step
in various applications in the fields of data mining, statistics, man-
ifold learning, non-rigid shape analysis, and more. For example, in
[24], Panozzo et al. demonstrated, using MDS, how to generalize
Euclidean weighted averages to weighted averages on surfaces.
Weighted averages on surfaces could then be used to efficiently
compute splines on surfaces, solve re-meshing problems, and find
shape correspondences. Zigelman et al. [44] used MDS for texture
mapping, while Schwartz et al. [14], [31] utilized it to flatten
models of monkeys’ cortical surfaces for further analysis. In [27],
[29], [32], MDS was applied to image and video analysis. In
[15] and [34], MDS was used to construct a bending invariant
representation of surfaces, referred to as a canonical form. Such
canonical forms reveal the intrinsic structure of the surface, and
were used to simplify tasks such as non-rigid object matching and
classification.

The bottleneck step in MDS is computing and storing all
pairwise distances. For example, when dealing with geodesic
distances computed on surfaces, this step is time-consuming and,
in some cases, impractical. The fast marching method [18] is an
example of one efficient procedure for approximating the geodesic
distance map between all pairs of p points on a surface. Its
complexity is O(p? log p) when used in a straightforward manner.
Nevertheless, even when using such an efficient procedure, the
complexities involved in computing and storing these distances
are at least quadratic in the number of points.

One way to reduce these complexities is by considering only
local distances between nearby data points. Attempts to do so
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were made, for example, in Locally Linear Embedding (LLE,
[28]]) Hessian Locally Linear Embedding (HLLE, [12]), and
Laplacian eigenmaps [3|]. For these methods, the effective time
and space complexities are linear in the number of points. These
savings, however, come at the expense of only capturing the local
structure while the global geometry is ignored. In [36], De Silva
and Tenenbaum suggested computing only distances between a
small subset of landmarks. The landmarks were then embedded,
ignoring the rest of the distances, and then the rest of the points
were interpolated into the target flat space. The final embedding,
however, was restricted to the initial one at the landmark points.

The Nystrom method [2] is an efficient technique to recon-
struct a positive semidefinite matrix using only a small subset of
its columns and rows. Various recent techniques for approximating
and reducing the complexities of MDS bear some resemblance to
the Nystrom method [26]. In [41] and [9], only a few columns
of the pairwise distance matrix were computed, after which the
Nystrom method was used to interpolate the rest of the matrix.
The main differences between these two methods are the column
sampling schemes and the way to compute the initial geodesic
distances. In the latter method, a regularization term was used
for the pseudo-inverse in the Nystrom method, which further
improved the distance matrix reconstruction. [22|] combined the
Nystrom method with Kernel-PCA [30] and demonstrated an
efficient application of mesh segmentation. Recently, Spectral-
MDS (SMDS) [1] obtained state-of-the-art results for efficiently
approximating the embedding of MDS. There, geodesic distances
are interpolated by exploiting a smoothness assumption through
the Dirichlet energy. Complexities are reduced by translating
the problem into the spectral domain and representing all inter-
geodesic distances, considering only the first eigenvectors of the
Laplace-Beltrami operator (LBO).

Here, we explore two methods, the Fast-MDS (FMDS) [33]
and Nystrom-MDS (NMDS) [35]], for efficiently approximating
inter-geodesic distances and, thereby, reduce the complexities of
MDS. FMDS interpolates the distance map from a small subset of
landmarks using a smoothness assumption as a prior, formulated
through the bi-Laplacian operator [6], [21], [37]. As opposed
to Spectral-MDS, the problem is solved in the spatial domain
and no eigenvectors are omitted, so that accuracy is improved.



Nevertheless, the time complexities remain the same. NMDS
learns the distance interpolation coefficients from an initial set
of computed distances. Both methods reconstruct the pairwise
geodesic distance matrix as a low-rank product of small matrices
and obtain a closed form approximation of classical scaling
through small matrices.

Our numerical experiments compare FMDS and NMDS to
all relevant methods mentioned above and demonstrate high ef-
ficiency and accuracy in approximating the embedding of MDS
and the inter-geodesic distances. In practice, our methods embed
10K -vertex shapes within less than a second, including all initial-
izations, with an approximation error of 0.007% from the same
embedding obtained by MDS. When compared to exact geodesics
[38]] on surfaces, our methods approximate geodesic distances with
a better average accuracy than fast marching, while computing
500M geodesic distances per second.

The paper is organized as follows. In Section 2] we briefly
review the classical scaling method. In Section [3] we develop
two methods for geodesic distance interpolation from a few
samples, formulated as a product of small-sized matrices. Section
discusses how to select the samples. In Section [5| we reformulate
classical scaling through the small-sized matrices obtained by the
interpolation. Section[f]provides support for the proposed methods
by presenting experimental results and comparing to other meth-
ods. Finally, Section[7] discusses an extension of embedding on a
sphere.

2 CLASSICAL SCALING

Given p points {y; }%_, equipped with some similarity measures
D;; between them, multidimensional scaling (MDS) methods aim
at finding an embedding {z;};_; in a low-dimensional Euclidean
space R™ such that the Euclidean distances ||z; — ;|| are
as close as possible to D;j. When the points {y;}?_; lie on
a manifold, the affinities Dij can be defined as the geodesic
distances between them. In this case, on which we focus in
this paper, D;; are invariant to isometric deformations of the
surface, thus revealing its intrinsic geometry. One way to define
this problem, termed classical scaling, is through the minimization

arg, min

; )]

1
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where Z;; = z], Ejj = Dj; and Ji; = ;5 — %, and as usual,
035 = 0 for ¢ # j and 6;; = 1 for all 4. Denoting by VAVT the
thin eigenvalue decomposition of the symmetric matrix —%J EJ,
with only the m largest eigenvalues and corresponding eigenvec-
tors, the solution for this problem is given by Z = VAz. This
requires the computation of all pairwise distances in the p X p
matrix F, which is not a practical solution method when dealing
with more than a few thousand points. In this paper, we reconstruct
E from a small set of its columns. We formulate the reconstruction
as a product of small-sized matrices, and show how to solve
the above minimization problem without explicitly computing the
reconstruction. Thus, we circumvent the bottleneck of classical
scaling and significantly reduce both space and time complexities
from quadratic to quasi-linear.

3 DISTANCE INTERPOLATION

Let M be a manifold embedded in some R” space. Denote by
E(x,y) the squared geodesic distance between z,y € M. In
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the discrete domain M is represented by p points, and E is
represented by a p X p matrix. In Sections and we develop
two methods for reconstructing &2 by decomposing it into smaller-
sized matrices £ ~ STST.

3.1 A smoothness-based reconstruction

One cornerstone of numerical algebra is representing a large
matrix as a product of small-sized matrices [13], [23]]. Compared
to such classical decomposition, better approximations can be
obtained when considering a specific data model. Here, we exploit
the fact that the elements of the matrix to be reconstructed are
squared geodesic distances, derived from some smooth manifold.

Starting from the continuous case, let xo € M be an arbitrary
point on the manifold, and denote by €: © € M — R the squared
geodesic distance from xg to all other points x € M. Assume the
values of &(x) are known in a set of n samples {z; }?; € M, and
denote these values by {r;}_,. We expect the distance function
() to be smooth on the manifold, as nearby points should have
similar &(x) values. Therefore, we aim to find a function &(z) that
both is smooth and satisfies the constraints é(x;) = r;. This can
be formulated through the minimization

é(x;) = ry, @)

where the energy £(€) is some smoothness measure of é(x)
on M. One possible, somewhat sensitive, choice of £(€) is the
Dirichlet energy

arg;minE(€)  s.t.

g0 = [ Ivela) Bda(a). ®
TeEM

used in [1], where da(x) is the infinitesimal volume element
and the gradient is computed with respect to the manifold. The
Dirichlet energy with point constraints could lead to removable
discontinuities; see Figurem Therefore, instead, we use a different
popular measure that yields a decomposition that is both simple

and less sensitive. Denoting by {(x) = Aé(z) the result of the
LBO on M applied to €, this energy is defined as

/ (Ae(x))2da(x) = / (I(2))da(z). @

zeM zeEM

£@) =

It yields the bi-Laplacian as the main operator in the resulting
Euler-Largange equation [6], [21], [37].

In the discrete case, we define the diagonal matrix A such that
its diagonal is a discretization of da(x) about each corresponding
vertex, and denote by the vectors [ and e the discretization of ]
and e, respectively. Note that e is a column in the matrix F, which
was defined earlier as the pairwise squared geodesics. Denote by
L the discretization of the LBO, such that [ = Le. We use the
cotangent-weight Laplacian with Dirichlet boundary conditions in
our experiments [25], [3|]. Any discretization matrix of the LBO,
however, can be used. Following these notations, the energy now
reads

p
E(e)=> 1°Ay; =1"Al =" L" ALe, (5)
=1

and the interpolation becomes
e* =arg, mine’ LT ALe st Be=r, (6)

where 7 is an n X 1 vector holding the values {r;}?_,. Recall that
7 is a subset of e. Hence, the n X p matrix B can easily be defined



such that Be = r. Since the constraints may be contaminated with
noise, a relaxed form of the problem using a penalty function is
used instead. This can be formulated as

e* = arg, min(e” LT ALe + p||Be — r||?), 7

where p is a sufficiently large scalar. This is a quadratic equation
and its solution is given by

M = (LTAL+uB"B) 'uB”
et = Mnr. (8)

To sum up, given a set of samples 7 of the distance function e, Mr
is a reconstruction of e in the sense of being a smooth interpolation
from its samples. Figures |I| and |Z| demonstrate the reconstruction
of e from its samples for flat and curved manifolds. Recall that e
is the squared geodesic distance from a point zq to the rest of the
points on the manifold. In this example, we chose z( at the center
of the manifold M. In Figure [1} the surface is flat and hence the
function e is simply the squared Euclidean distance from a point
inR?, z =224 y2, where = and y are the Euclidean coordinates.
We compare the suggested energy to the Dirichlet energy. As can
be seen, when using the Dirichlet energy, the function includes
sharp discontinuities at the constraint points.
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Fig. 1: Reconstruction of e (a column of F)) on a flat surface. Left:
The true values of e. The chosen n = 13 samples are marked by
red points. Middle and right: The reconstructed function e* = Mr
using the Dirichlet and Laplacian energies. For comparison, we
colored the function according to the absolute error |e* — e].

Curved surface True Reconstruction

a0 A

Fig. 2: Reconstruction of e (a column of F) on a curved surface.
Left: The curved surface. Middle: The true values of the distance
function e, measured from the middle point of the surface, and
sampled at n = 30 red points. Right: The reconstructed function
e* = M using the suggested energy.

In Equation (]Z[) a larger value of y corresponds to stronger
constraints, in the sense that the surface is restricted to pass closer
to the constraints. In the next experiment, we measure the average
reconstruction error % with respect to the parameter p, for
a random set of geodesic paths {e} on the hand and giraffe shapes
from the SHREC dataset. It can be seen that larger values of
lead to better approximations up to a limit that depends on the
number of samples. This saturation occurs at a point where the
surface approaches the constraints up to a negligible distance with
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respect to its reconstruction error at the remaining points. Very
large values of p might lead to numerical errors in the inversion
step of Equation (8). In practice, as a typical number of samples
in our method is 20-100, any value between 10* and 1019 would
be a good choice of p.
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Fig. 3: Average reconstruction error w.r.t. the penalty parameter /.

Next, since e is a column in the matrix £, we reconstruct
all the other columns in the same manner. Notice that the matrix
M does not depend on the values of e, but only on the samples’
locations. Hence, it can be computed once and used to reconstruct
all columns. Moreover, it is possible to formulate the reconstruc-
tion of all the columns of E simultaneously using a simple matrix
product. Let us choose n < p columns of £ and let the p X n
matrix R hold these columns. The locations of the columns in
E correspond to the locations of the samples in the manifold.
Each column of RT corresponds to a vector r, which contains the
distances from the n samples to a point g, which corresponds to
the column. The column selection and the computation of R are
discussed in Section Now, all columns of E can be interpolated
simultaneously by the product

F=MR". ©)

Since F is symmetric by definition, we symmetrize its reconstruc-
tion by

R 1
E= i(MRT + RM7T). (10)
Notice that E is a low-rank reconstruction of £ with a maximal

rank of 2n, because R is of size p X n, Wpich means the rank of
MRT is at most n. Therefore, the rank of F = % (MRT+RMT)

is at most 2n. Consequently, F/ can be written as a product

of matrices that are no larger than 2n X p. These matrices

can be obtained as follows. Denote by S = (M|R) the hori-

zontal concatenatioln of M and R, and define the block matrix
1 nxn

AN

be verified that

0 . . . .
nxn , where I is the identity matrix. It can

O’Vl)(n

E= %(MRT +RMT) = STST. an
We actually only need to keep the matrices S and T instead of the
whole matrix £, which reduces the space complexity from O(p?)
to O(np). In our experiments, between 20 and 100 samples were
enough for accurate reconstruction of I, where the number of
vertices p was in the range of 103 to 106.

Above we derived a low-rank approximation of the matrix E
from a set of known columns. The same interpolation ideas can be
used for other tasks such as geodesics extrapolation [8]] and matrix
completion [16], in which a matrix is reconstructed from a set of
known entries and the columns may vary in their structure.



3.2 A learning-based reconstruction

In Section we derived a reconstruction £ = STST by
exploiting the smoothness assumption of the distances on the
manifold. Although the suggested energy minimization results in
a simple low-rank reconstruction of E, this might not be the best
way to interpolate the distances. We now formulate a different
decomposition based on a learning approach.

As before, we choose n arbitrary columns of F and let R hold
these columns. In Section 3.1} we constructed an interpolation
matrix M using the LBO as a smoothness measure such that £/ =~
MRT or similarly E ~ RM7T. Here we attempt to answer the
following question: Is it possible to construct a matrix M that
would yield a better reconstruction? The matrix M for the best
reconstruction of E in terms of the Frobenius norm is obtained by

arg,, min |[RM" — E||%, (12)

and the solution is given by M7 = RTE. In this case, the
reconstruction is nothing but a projection of E onto the subspace
spanned by the columns of R,

E = RRTE. (13)

We cannot, however, compute the best M since we do not know
the entire matrix F. Hence, we suggest learning the coefficients
of M from the part of E' that we do know. This can be formulated
using a Hadamard product as

&uﬁnginHHO(RMT—E)||?;7 (14)

where H is a mask of the location of RT in E (the known rows
of F). The known rows of F can be thought of as our training
data for learning M. This has some resemblance to various matrix
completion formulations, such as the Euclidean Distance Matrix
(EDM) completion in [16]]. Nevertheless, unlike previous methods,
our primary goal here is to derive a formulation that can be
expressed as a low-rank matrix product, preferably in a closed
form, which is also efficient to compute. Next, define s as the
intersection of R and RT—that is, the elements that belong both
to R and RT’; see Figure [al
The above equation is equivalent to

arg,, min |R,MT — RT|%. (15)

In this form, the number of coefficients in M is large with respect
to our training data, which will result in overfitting. For instance,
for a typical 2, with independent columns, the reconstruction of
the training data R” is perfect. Therefore, to avoid overfitting
to the training data, we regularize this equation by reducing the
number of learned coefficients. Let C' hold a subset of n1 < n
columns of R, and define C, as the intersection of C and R ; see

Figure fAb] The regularized formulation is
arg,, min ||CsMT — RT||%, (16)

where M is now a smaller matrix of size p X nq, and the solution
is given by

M = (CTc,)"'CTR" = URT, (17)
yielding what is known as a CUR decomposition of F,
E=CUR". (18)

CUR decompositions are widely used and studied; see, for exam-
ple, [13[], [23]. Notice that when n; = n, we obtain

E = RRIRT, (19)

(a) (b)

Fig. 4: Demonstration of the partition of £, assuming the columns
were chosen as the first ones. R4 and Cj are a part of the matrices
R and C'. Note that C' and C, are subsets of R and R;.

which is known as the Nystrom decomposition for positive
semidefinite matrices [2]]. Choosing a large value for n; would
result in overfitting to the training data. Alternatively, a low value
would limit the rank of the approximated matrix and hence the
ability to capture the data.

In Figure E] (CUR) we demonstrate the reconstruction error
of E with respect to ny, where n = 200. There is a significant
potential improvement compared to the previous un-regularized
case of n; = n, which results in the Nystrom method.

Matrix approximation error

—CUR
- - Modified

10°

Fig. 5. The reconstruction error with respect to 71, given by
%, using the learning approach (CUR) and its proposed
modification. E is computed from the giraffe shape in the SHREC

database (see experimental results).

In order to further reduce overfitting, we defined the matrix
C as a subset of the matrix R. A different choice of C' can lead
to a better reconstruction of F. Denote b~y~VAVT the eigenvalue
decomposition of R, and denote by VAV the thin eigenvalue
decomposition of R¢ with only the n; eigenvalues with the largest
magnitude and n; corresponding eigenvectors. The choice of

C =RV (20)

formulates C' as a linear combination of the columns of R instead
of a subset of R, thus exploiting better learning of the data.
Moreover, this will result in a symmetric decomposition of E.
We have

RV
VAVTV
VAVTV I,

Cs =



Y/}Inxnl

= VA, 1)

where I, «pn, is the rectangular identity matrix (with ones along
the main diagonal and zeros elsewhere). Thus,

(CeCs) 'Oy
= (AVTVA) 'AVT

U

(22)

Plugging C = RV and U = A~'V7 into Equation li we
obtain
E=RVAVTRT, (23)
Finally, by defining S = R and T = VA~'V7, we obtain the
desired decomposition
E=81S". 24)
This results in a symmetric low-rank decomposition of E with
rank n, (compared to the rank 2n we achieved in Section [3.1).
It can be thought of as a variant of the Nystrom method where
T = VA='VT is a regularized version of R}. In Figure |5| we
demonstrate the improvement resulting from this modification. In

all our experiments, [$n| was a good choice for ;.

4 CHOOSING THE SET OF COLUMNS

The low-rank approximations of F developed in Section [3| are
constrained to the subspace spanned by chosen columns. Thus,
a good choice of columns would be one that captures most of
the information of E. The farthest point sampling strategy is a
2-optimal method for selecting points from a manifold that are far
away from each other [[17]. The first point is chosen arbitrarily.
Then, recursively, the next point is chosen as the farthest (in a
geodesic sense) from the already chosen ones. After each point is
selected, the geodesic distance from it to the rest of the points is
computed.

The computation of geodesic distance from one point to the
rest of the points can be performed efficiently using the fast
marching method [18]] for two-dimensional triangulated surfaces,
and Dijkstra’s shortest path algorithm [11]] for higher dimensions.
For surfaces with p vertices, both methods have complexities of
O(plogp). Therefore, the complexity of choosing n points with
the farthest point sampling strategy is O(nplog p). Note that Di-
jkstra’s algorithm might have some limitations as an interpolation
mechanism and should be used with care, especially in high-
dimensional manifolds [37]]. For the case of a weighted graph,
the authors in [37] suggested a way to compute the edge weights
for convergence of the graph to the actual distance.

Using the farthest point sampling strategy, we obtain 7 sam-
ples from the manifold and their distances to the rest of the points,
which, when squared, correspond to n columns of E. Since the
samples are far from each other, the corresponding columns are
expected to be far as well (in an Lo sense) and serve as a good
basis for the image of F. While other column selection methods
need to store the whole matrix or at least scan it several times to
decide which columns to choose, here, by exploiting the fact that
columns correspond to geodesic distances on a manifold, we do
not need to know the entire matrix in advance. The farthest point
sampling method is described in Procedure [I]

Procedure 1 Farthest point sampling

Input A manifold with a set of p vertices V = {v1,va, ..
and desired number of chosen vertices 7.
Output A set of samples S = {r1, ..., 7, } and their distances to
the rest of the vertices Fj,x,,
: Choose an initial vertex 71, S <~ SU {r1}
: Compute F{, 1) < dist(v,, ) (see comment below).
: for i =2tondo
Find the farthest vertex from the already chosen ones,
Ty = argmaxy<i<|v| minlgk@ ij.
Update the set of selected samples, S +— S U {r;}
Compute F{. ;) < dist(v,, ).
: end for
> dist(v) returns a vector of geodesic distances from vertex
v to the rest of the vertices.

> Up}

AWy =

@R

5 ACCELERATING CLASSICAL SCALING

In this section, we show how to thain the solution for classical
scaling using the decomposition &/ = ST'ST constructed in the
previous sections. A straightforward solution would be to plug E
instead of F into Equation [l and repeat the steps:

1) Compute the thin eigenvalue decomposition of
Y = —%JEJ with the m largest eigenvalues and
corresponding eigenvectors. This can be written as

Y ~ ViA VT (25)
2) Compute the embedding by
L1
Z =ViA}. (26)

This solution, however, requires storing and computing E, result-
ing in high computational and memory complexities.

To obviate this, we propose the following alternative. Denote
by QR the thin QR factorization of J.S. Note that the columns of
@ are orthonormal and R is a small upper triangular matrix. We
get

1. 1 1
Yy = —§JEJ = —§JSTSTJ = —§QRTRTQT. 27

Denote by Vg]&gfsz the thin eigenvalue decomposition of
—%RTRT, keeping only the m first eigenvectors and m cor-
responding largest eigenvalues. This can be written as
1 .
- 5RTRT ~ Vaho Vi (28)
accordingly, o
Y ~ QVah VI QT (29)
Since Va2 is orthonormal as a product of orthonormal matrices
and A, is diagonal, this is actually the thin eigenvalue decom-
position of Y as in Equation (23)), obtained without explicitly
computing Y. Finally, the solution is given by
.1
Z = QVaA3. (30)
We call the acceleration involving the decomposition in Section
[B:1) Fast-MDS (FMDS) and the acceleration involving the decom-
position in Section [3.2] Nystrom-MDS (NMDS). We summarize
them in Procedures 2] and Bl
FMDS and NMDS can be seen as an axiomatic and data-
driven approaches that attempt to approximate geodesic distances



as a low-rank matrix. NMDS learns the interpolation operator
from the data and obtains better accuracies and time complexities
in most of our experiments. In FMDS, the interpolation opera-
tor is based on a smoothness assumption through a predefined
operator. In the FMDS solution, unlike NMDS, the columns of
the pairwise distance matrix are interpolated independently. As
a general guideline, when applying the proposed procedures for
manifold embedding and pairwise distance approximation, we
suggest using NMDS since it is simpler to implement and usually
more efficient and accurate. When dealing with tasks for which
boundary conditions vary for different geodesic paths, or where
the columns of the distance matrix vary in their structure, such
as in matrix completion, FMDS could be used to interpolate
the missing values of the columns independently. In terms of
efficiency, FMDS would be faster if the LBO on the manifold
was already computed. Finally, when accuracy is more important
for local distances than for larger distances, FMDS may be the
preferred choice (see Figures[T0]and [T3).

Procedure 2 FMDS
Input A manifold M represented by p vertices, the number of
samples n and the embedding dimension m.
Output A matrix Z which contains the coordinates of the em-
bedding.
1: Choose n vertices from M and construct the matrix R, using
farthest point sampling described in Sectionﬂ
2: Compute the discretized Laplace-Beltrami matrix L of M
using, for example, cotangent weights [23]].
3: Compute M according to Equation (8).
4: Define T, S according Equation and J according to
Section 2]
5: Compute the QR factorization QR = JS.
6: Compute V5 and Ao, which contain the m largest eigenvalues
and corresponding eigenvectors of —fRTRT using eigen-
value decomposition.

-1
7: Return the coordinates matrix Z = QV2Aj3.

6

imations: The proposed Fast-MDS (FMDS, Procedure |Z[) the
proposed Nystrom-MDS (NMDS), (Procedure EI), Spectral-MDS
(SMDS [1]}), Landmark-Isomap [36]], Sampled Spectral Distance
Embedding (SSDE, [9])), ISOMAP using Nystrém and incremental
sampling (IS-MDS [41])). We also compare our distance approx-
imation to the Geodesics in Heat (Heat) method [[10], which
computes geodesic distances via a pointwise transformation of
the heat kernel, and to the Constant-time all-pairs distance query
(CTP) method [40], which approximates any pair of geodesic
distances in a constant time, at the expense of a high complexity
pre-processing step. In Figures E] and by ‘Best’ we refer to
the best rank-n approximation of a matrix with respect to the
Frobenious norm. For symmetric matrices this is known to be
given by the thin eigenvalue decomposition, keeping only the
n eigenvalues with the largest magnitude and n corresponding
eigenvectors. Unless specified otherwise, we use the non-rigid
shapes from the SHREC2015 database [20] for the experiments,
and each shape is down-sampled to approximately 4000 vertices.
For SMDS we use 100 eigenvectors. The parameter p is set to
10%.

The output of MDS, known as a canonical form , is
invariant to isometric deformations of its input. We demonstrate
this idea in Figure[6] showing nearly isometric deformations of the
giraffe, paper and watch shapes and their corresponding canonical
forms in R3 obtained using the NMDS method described in
Procedure 3 It can be seen that the obtained canonical forms are
approximately invariant to the different poses.

Giraffe

Canonical form

Procedure 3 NMDS

Input A manifold M represented by p vertices, the number of
samples n and the embedding dimension m.

Output A matrix Z which contains the coordinates of the em-
bedding.

1: Choose n vertices from M and construct the matrix R, using
farthest point sampling described in Section@

2: Denote by R the rows of R which corresponds to the selected
vertices (See Flgure@ ~ _

3: Compute T = VA“'VT, where A and V hold the
ny = [%n] largest magnitude eigenvalues and corresponding
eigenvectors of R, and denote S' = R.

4: Compute the QR factorization QR = JS.

5: Compute V5 and Ao, which contain the m largest eigenvalues
and corresponding eigenvectors of —%RTRT, using eigen-
value decomposition.

|
6: Return the coordinates matrix Z = QVaA3

6 EXPERIMENTAL RESULTS

Throughout this section, we refer to the classical scaling procedure
(Section |Z|) as MDS and compare it to its following approx-

Canonical form

Watch

b
{
k
0
i)
|

Canonical form

Fig. 6: Shapes in different poses from the SHREC database, and
their corresponding canonical forms obtained by NMDS. Here,
each shape consists of 10* vertices.

Unless a surface is an isometric deformation of another flat sur-
face, flattening it into a canonical form would unavoidably involve
some deformation of its intrinsic geometry. This deformation is
termed the embedding error, which is defined by the value of the



objective function of MDS,

1
stress(Z) = HZZT + BT (31)

F

In our next experiment, shown in Figure m we compare the
canonical forms of the giraffe and hand shapes, obtained using the
different methods. For presentation purposes we scale each em-
bedding error to @stress(Z ) and show it below its corresponding
canonical form, where p is the number of vertices. Qualitative
and quantitative comparisons show that the proposed methods are
similar to MDS in both minimizers and minima of the objective
function. Additionally, the embedding results of NMDS are similar
to those of MDS up to negligible differences.

MDS NMDS FMDS SMDS Landmark SSDE
}W 4[4 4 4] 4 |4
Stress 5.355 5.355 5.366 5.557 6.288 10.748
Stress 3.883 3.887 3.936 4.472 9.128 11.191

Fig. 7: Canonical forms of giraffe and hand shapes, using
n = 100 samples for the compared methods. The stress error
%HZZT + 5JEJ||, of each embedding is displayed at the
bottom of its corresponding form.

In our next experiment, we directly compare the canonical
forms of the different methods (Z) to that of MDS (Z*). To
compare two canonical forms, we align them using ICP [4] and
then compute the relative approximation error % Figure a
shows the results with respect to the number of samples 7, on the
hand shape. It can be seen that both proposed methods outperform

the others in approximating the embedding of MDS.
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Fig. 8: Distance of approximated canonical forms to the true one
with respect the number of samples 7, using different methods.

The proposed methods not only provide fast and accurate
approximations compared to MDS, but can also be used to
significantly accelerate the computation of geodesic distances by
approximating them. In the following experiments, we measure
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the distance approximation error on the giraffe shape. In Figure
ID—Dllr
IDlF

D approximates D using different methods. Since the compared
methods are essentially different low-rank approximations of F,
we also add the best rank-n approximation to the comparison.

we compare the relative reconstruction error , where

1 Matrix approximation error
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Fig. 9: The reconstruction error of D with respect to the number
of samples n, using different methods.

In Figure [T0} we visualize the geodesics approximations of
randomly chosen 30K pairs of distances using different methods.
We do this by plotting the true and approximated distances along
the = and y axes, thus showing the approximation’s distribution
over the surface.
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Fig. 10: Approximated distance as a function of the true distance,
using SMDS, FMDS, NMDS, Geodesics in Heat and the best low-
rank reconstruction. For better visualization, the plots are shifted
horizontally by ¢ = {0, 1,2, 3}, respectively. In this experiment
we used n = 100.

Thus far, we used fast marching as a gold standard in order to
compute the initial set of geodesic distances and then evaluate the
results. In the following experiment, we use the exact geodesics
method [38]] instead. This method computes the exact geodesic
paths on triangulated surfaces and is more accurate in terms of
truncation error when compared to the limiting continuous solu-
tion. This should also allow us to compare our derived geodesic
distances to the ones obtained using fast marching. Figure @
shows that exact geodesic distances from less than 30 points were



required in the initialization step, in order to obtain a full matrix
of pairwise geodesic distances, computed using NMDS, which is
more accurate than the full matrix obtained by the fast marching
method. This experiment demonstrates the average error.
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Fig. 11: The reconstruction error of D with respect to the number
of samples n as evaluated by exact geodesics, using different
methods.

In Table [T] we compare the preprocessing, query times and
accuracies of CTP to the one proposed in this paper. We use
the same Root-Mean-Square, over a set of random pairs, of
the relative error €(i,j) = w, which was used in
their paper. In this experiment, the initial set of distances was
computed using fast marching for NMDS and FMDS, and exact
geodesics for CTP. All three methods were evaluated using exact
geodesics as the ground truth. The query time complexity is O(1)
for CTP and O(n) for FMDS and NMDS, where n = 20-
100 is the number of samples. Nevertheless, in the method we
propose, query operations are done by one matrix product that
typically has efficient implementations in standard frameworks,
and thus our query step is more than x 1000 faster. As for the pre-
processing step, the method we introduce requires many fewer
samples (around x 100 less geodesics computations) and is thus
also much faster.

Pairwise geodesics approximation — Methods comparison
#Samples 20 100 500 1000 2000 3000
a. Accuracy
CTP - - 0.65%
FMDS 0.008% 0.002% 0.0008% 0.0005%
NMDS 0.006% 0.002% 0.001% 0.0006%
b. Query speed (# queries/second)
CTP - - - 27.3K
FMDS 81.3M 23.9M 5.0M 2.5M
NMDS 449.1M 325.5M 106.7M 49.5M

0.45% 0.3% 0.2%

36.7K 45.4K

c. Preprocessing time (sec) - 30K vertices

CTP - - 100s 200s 400s 600s
FMDS 3.3s 1.7s 64.6s 174.9
NMDS 1.3s 7.2s 50.7s 149.4s

TABLE 1: (a) Accuracy, (b) query, and (c) preprocessing time of
geodesic distance approximations using FMDS, NMDS and CTP.

Next, we evaluate the influence of noise on the geodesic
distance approximations. We add random uniform and sparse (salt
and pepper) normally distributed noise to the hand and giraffe
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shapes, respectively. The sparse noise was added to 1% of the
vertices. We initialize NMDS and FMDS with the fast marching
distances that were computed on the noisy surfaces, and evaluate
the resulting geodesics using the fast marching distances that
were computed before adding the noise. Figure [I2] shows that
the distances computed by our methods remain close to the noisy
fast marching distances. Thus, we conclude that the methods we
propose approximate the distances they were initialized with well,

whether they contain noise or not.
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Fig. 12: Influence of noise on the geodesic approximation error
for Geodesics in Heat, FMDS, NMDS, and fast marching. All
approximations are compared to the geodesic distances that were
computed using fast marching before adding the noise.

Next, we evaluate the deviation of the approximated distance
from satisfying the triangle inequality, as done in [10]. We com-
pute the total violation error of a surface point a as follows. For
any other two surface points b, ¢, if

&rr(a,b,¢) = [[b— | = ([Ib — all + [lc — al])

is positive, we add Er7(a, b, ¢) to the total violation error of point
a. We choose 100 random points on the surface and measure their
total violation error. Figure |E| compares the NMDS, FMDS, and
Heat methods. It can be seen that NMDS and FMDS had lower
violation errors than Geodesics in Heat. Among the proposed
methods, FMDS has the lowest error since it is more accurate
than NMDS in approximating the small distances.

(32)
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Fig. 13: The triangle inequality total violation error of 100
randomly chosen surface points (sorted), for NMDS, FMDS and
Geodesics in Heat.

Finally, as shown in Figure @ we evaluate the average
computation time of MDS, NMDS, FMDS, and SMDS on three



shapes from the TOSCA database [7[], including the computation
of the geodesic distances. We change the number of vertices
p by subsampling and re-triangulating the original shapes. The
computations were evaluated on a 2.8 GHz i7 Intel computer
with 16GB RAM. Due to time and memory limitations, MDS
was computed only for small values of p.
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Fig. 14: Average computation times (in seconds) for MDS,
NMDS, FMDS and SMDS with respect to the number of vertices.

7 SPHERE EMBEDDING

So far we discussed MDS as a flattening procedure, meaning that
the data is embedded into a flat Euclidean space. Nevertheless, in
some cases, it may be beneficial to embed the data onto a sphere,
on which distances are measured according to the sphere’s metric.
In this section, we extend the proposed methods for embedding
onto a sphere rather than in a Euclidean space.

A k-dimensional sphere is the set of all points in R*+! at an
equal distance from a fixed point. Without loss of generality, we
assume that this fixed point is the origin, so that the sphere is
centered. The geodesic distance between two points 2; and z; on
a sphere of radius 7 can be computed by the arc length

Q5

27
where «; is the angle between the vectors z;, z; in RFtL, Given
a manifold with pairwise geodesic distances D;;, we aim to find a
set of points {z; }?_, in R**1, representing the embedding of the
manifold on a sphere, such that D;; ~ o;;r. Dividing by r and
applying cos on both sides leads to cos % /2 COS Oy

Let D be a p X p matrix holding the distances D

(33)

2mr = ayjr,

i;> and define

T ; . . .
Zy = T%Z. Since cosay; = ‘;"’Hif‘, we can write in matrix
. illz
formulation,
D
~ T
cos (7 2L, (34)

Then, we can formulate the problem through the minimization

Z% = argmin HZTZTT + EHF, (35)

similar to classical scaling, where E' = cos(£). This minimiza-
tion can be solved using the same techniques presented in FMDS
or NMDS. Namely, compute the decomposition of E with one of
the methods in Section [3} Then, follow Section [3] to obtain the
truncated eigenvalue decomposition while ignoring the matrix J

and the scalar % The final solution is given by Z = r2Z*.
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A step of normalization of the rows of Z can be added to
constrain the points to lie on the sphere. Notice that when there
exists an exact spherical solution, it will be obtained without this
step. This results from the fact that D;; = 0 and, therefore, E;; =
1. Hence, for an exact solution without embedding errors, we get
{Z,.ZT};i = 1, which is true only when the rows of Z, are
normalized.

In the following experiment, a camera was located on a chair
at the center of a room, and a video was taken while the chair
was spinning. The frames of the video can be thought of as points
in a high-dimensional space, lying on a manifold with a spherical
structured intrinsic geometry. Using the method described in this
section, we embed this manifold onto a 1-dimensional sphere us-
ing NMDS (without the normalization step), and show the results
in Figure [I3] A nice visualization of this experiment appears in
the supplementary material. Both MDS and NMDS result in a
similar circular embedding, revealing the intrinsic geometry of
the manifold. The pose of the camera for any frame can then be
extracted from the embedding, even if the order of the frames
in the video is unknown. This experiment also demonstrates that
the proposed methods are capable of dealing with more complex
manifolds in high-dimensional spaces and with embeddings in
metrics other than Euclidean ones.

t=22.2sec t=0.15sec
10 10
\
0 |} 0 L] ‘
10 10
20 10 0 10 20 20 10 0 10 20
2000 2000,
1000 1000 !
20 e 2N\ -
0 ‘\\\///——/ ) 0 ~ - 0
-20 -20 -20 -20
(a) MDS (b) NMDS

Fig. 15: Embedding points onto a sphere using Full MDS (left)
and the proposed NMDS (right). The points are frames of a video
of a room taken from its center while rotating two whole turns.
The images at the top show the embedding on a 1-dimensional
sphere. The time it took to create each embedding is added at
the top. For better visualization, we add an additional axis of the
frame number, shown in the images at the bottom.

Next, we randomly sample p points {z;}; from a quarter of a
k-dimensional sphere of radius r = 1, centered at the origin. We
build a knn graph from the points such that each point is connected
to w neighbors. We compute n initial geodesic distances both
analytically and using Dijkstra’s shortest path for the farthest point
sampling step, and approximate the rest of the distances using
NMDS. Thereafter, we embed the distances on a k-dimensional
sphere, as well as in a k-dimensional Euclidean space. For evalu-
ation, we analytically compute all distances and compare them to
the approximated ones using the relative reconstruction error seen
previously in Figure[9] The embedding error is evaluated using the
stress in Equation

For this experiment, we choose p = 2000 points, n = 100



initial distances, embedding space dimension k= 2,andw = 120
nearest neighbors. Note, however, that the results did not change
much for different sets of plausible parameters. We test the
proposed method for different intrinsic dimensions k between 1
and 10. Figure [T shows the results. Not surprisingly, the stress
is lower for sphere embedding than for Euclidean embedding. It
can be seen that the proposed method approximates well both
the ground truth embedding and the distances it was initialized
with, regardless of the intrinsic dimension of the sphere manifold.
For the distance approximation, the error of NMDS initialized by
Dijkstra’s algorithm stems mainly from the error introduced by the
graph approximating the continuous distance. As for the stress,
since the embedding procedure is robust to noise in distances,
the stress is not substantially different between the two proposed
methods.

Geodesic distance approximation

Dijkstra
~ -NMDS initiated with dijkstra
NMDS initiated with true distance

Intrinsic dimension

Euclidean embedding Sphere embedding
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—True distance
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——True distance
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1000 1000

Stress error
\
Stress error

o
o
<]

~
o
o
o

\‘\
\

2 4 6 8 10 2 4 6 8 10
Intrinsic dimension Intrinsic dimension

Fig. 16: Evaluation of the proposed method with respect to the
intrinsic dimension k. Top: The geodesic reconstruction error of
Dijkstra’s algorithm, NMDS initialized by Dijkstra, and NMDS
initialized by analytically computed distances. Bottom left: Stress
error of embedding in a Euclidean space, using the distances
computed analytically (True), with Dijkstra, and with NMDS
initialized once with the analytic and then with the Dijkstra
approximation of the distances. Bottom right: Stress error when
embedding in a low-dimensional sphere.

8 CONCLUSIONS

In this paper we develop two methods for approximating MDS
in its classical scaling version. In FMDS, following the ideas of
Spectral-MDS, we interpolate the geodesic distances from a few
samples using a smoothness assumption. This interpolation results
in a product of small matrices that is a low-rank approximation of
the distance matrix. Then, time and space complexities of MDS are
significantly reduced by reformulating its minimization through
the small matrices. The main contribution to the improvement
in time complexity and accuracy over SMDS is the fact that we
work entirely in the spacial domain, as opposed to SMDS, which
translates the problem into the spectral domain and truncates
the eigenspace. FMDS sets the stage for the second method we
term NMDS. Instead of constructing an interpolation matrix using
smoothness assumptions, it is now learned from the sampled data,
which results in a different low-rank approximation of the distance
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matrix. A small modification of the method shows its relation
to the Nystrom approximation. Although NMDS performs better
than FMDS in most experiments, the interpolation ideas of FMDS
can also be used for other tasks, such as matrix completion, where
instead of being arranged in columns, the known entries might be
spread over the matrix. Experimental results show both methods
achieve state-of-the-art results in canonical form computations. As
a by-product, the methods we introduced can be used to compute
geodesic distances on manifolds very fast and accurately. Finally,
an extension to embedding on spheres shows how these methods
can deal with more complex manifolds in high-dimensional space
embedded into non-flat metric spaces.
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